Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Water Res ; 212: 118082, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123382

RESUMO

Lignin, a biological resource with great potential, can be as high as ∼16% of the total organics in the waste activated sludge (WAS). This work therefore aims to fill the knowledge gap about the effect of lignin on short-chain fatty acids (SCFAs) production from anaerobic fermentation of sludge. Experimental results showed that lignin promoted rather than inhibited SCFAs production. Specifically, the presence of 15% lignin promoted the SCFAs production from 129.1 ± 6.5 to 223.14 ± 7.8 mg COD/g VSS compared with the control, and the proportion of acetic increased by 61.8%, while that of propionic decreased by 44.9%. Mechanism exploration revealed that lignin improved the solubilization of biodegradable substrates due to its hydrophobic characteristics. In addition, lignin enhanced the acidogenesis process, possibly by perfecting the electron transfer chain in the fermentation system, and the quinone structure in lignin may compete electrons with methanogens to inhibit the consumption of SCFAs. Microbiological analysis showed that the abundance of microorganisms related to acidogenesi, especially the acetogenesis, including Proteiniclasticum sp., Acetoanaerobium sp., in the fermenter with lignin increased, which caused the community to shift towards specialized and diverse SCFAs production.


Assuntos
Lignina , Esgotos , Anaerobiose , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio
2.
Environ Technol ; 43(27): 4279-4290, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34165033

RESUMO

The technology of anaerobic co-digestion to treat the excess biological sludge discharged from activated sludge systems in oil refineries was evaluated in bench scale experiments. Mixing food waste rich in fruits and vegetables with this sludge increased the reduction of volatile solids and biogas yield. An experimental design indicated that the best co-digestion condition was the use of waste activated sludge without previous dewatering (3.5% total solids) and food waste in an 80:20 ratio (% v/v), without the addition of inoculum. After 45 days at 35 °C, this condition resulted in volatile solid (VS) removal of 52% and biogas yield of 80.7 mL biogas/g VSadded, against only 19% and 38.5 mL biogas/g VSadded in mono-digestion of sludge alone. Anaerobic co-digestion demonstrates promising results and the potential for a simple and effective treatment method for excess biological sludge generated at refineries.


Assuntos
Eliminação de Resíduos , Esgotos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Alimentos , Metano , Indústria de Petróleo e Gás , Verduras
3.
Biotechnol Biofuels ; 14(1): 81, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794986

RESUMO

BACKGROUND: Most of the organic content of waste activated sludge (WAS) comprises microbial cells hard to degrade, which must be pre-treated for energy recovery by anaerobic digestion (AD). Electrooxidation pre-treatment (EOP) with boron-doped diamond (BDD) electrode have been considered a promising novel technology that increase hydrolysis rate, by the disintegrating cell walls from WAS. Although electrochemical oxidation could efficiently solubilize organic substances of macromolecules, limited reports are available on EOP of WAS for improving AD. In this endeavour, the mathematical optimization study and the energy analysis of the effects of initial total solids concentrations [TS] of WAS and current density (CD) during EOP on the methane production and removal of chemical oxygen demand (COD) and volatile solids (VS) were investigated. Because limited reports are available on EOP of WAS for improving biogas production, it is not well understood; however, it has started to attract interest of scientists and engineers. RESULTS: In the present work, the energy recovery as biogas and WAS conversion were comprehensively affected by CD and [TS], in an integrated EOP and AD system. When working with WAS at 3% of [TS] pre-treated at current density of 24.1 mA/cm2, the highest COD and VS removal were achieved, making it possible to obtain the maximum methane (CH4) production of 305 N-L/kg VS and a positive energy balance of 1.67 kWh/kg VS. Therefore, the current densities used in BDD electrode are adequate to produce the strong oxidant (hydroxyl radical, ·OH) on the electrode surface, allow the oxidation of organic compounds that favours the solubilization of particulate matter and VS from WAS. CONCLUSIONS: The improvement of VS removal and COD solubilization were due to the effects of pre-treatments, which help to break down the microbial cells for faster subsequent degradation; this allows a decomposition reaction that leads to biodegrade more compounds during AD. The balance was positive, suggesting that even without any optimization the energy used as electricity could be recovered from the increased methane production. It is worth noting that this kind of analysis have not been sufficiently studied so far. It is therefore important to understand how operational parameters can influence the pre-treatment and AD performances. The current study highlights that the mathematical optimization and energy analysis can make the whole process more convenient and feasible.

4.
J Environ Manage ; 236: 317-322, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738302

RESUMO

Sludge generated after wastewater treatment represents an important challenge due to the large amounts produced and the need to adequately treat it. Anaerobic digestion is the preferred treatment process to obtain renewable energy as well as a biosolid with the potential to be reused in land application. This process generates biogas (methane and carbon dioxide) that may be used for energy co-generation. However, anaerobic digestion is limited by the hydrolysis step since bacteria need to break down organic matter and large molecules to allow conversion into biogas. In this study, electrochemical treatment of sludge is proposed to solubilize organic matter. Boron-doped diamond electrodes were used to treat waste activated sludge under different experimental conditions (current density, flow rate, time) to evaluate their influence on the solubilization of organic matter (in terms of chemical oxygen demand). The degree of solubilization ranged between 0.31 and 1.78%. Based on the results, optimal operating conditions were current density of 19.3 mA cm-2, flow rate of 4 L min-1, and treatment time of 30 min. Furthermore, treatment flow rate was found to play a key role in solubilization, as the process is controlled by mass transfer.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Metano
5.
Eng. sanit. ambient ; Eng. sanit. ambient;20(4): 581-588, out.-dez. 2015. tab, graf
Artigo em Português | LILACS | ID: lil-769725

RESUMO

RESUMO Esta pesquisa comparou o desempenho de um digestor anaeróbio de lodo sob diferentes estratégias operacionais. Foi avaliada a influência do aumento da carga orgânica volumétrica (COV) (OP I) e o efeito da redução do tempo de detenção hidráulica (TDH) (OP II e OP III) no processo anaeróbio. As cargas aplicadas variaram entre 0,5 e 4,5 kgSV.m-3.d-1 e o TDH foi reduzido de 15 a 5 dias. Produção de gás metano, degradação do material orgânico e a diversidade microbiana foram utilizadas para medição e comparação do desempenho do processo. Foram necessários períodos de aclimatação a cada nova COV aplicada o que levou às instabilidades na remoção de SV e DQO do lodo. A operação com TDH entre 7 e 5 dias apresentou as maiores eficiências de remoção de SV, superiores a 70%, o que influenciou positivamente na estabilidade do processo. As COV aplicadas de 2,5 e 3,5 kgSV.m-3.d-1 resultaram nas maiores produções de metano durante a OP I. Para TDH inferiores a sete dias a produção de CH4 foi prejudicada apesar da existência de microorganismos metanogênicos atuantes no digestor. Comparativamente, a estratégia de redução do TDH resultou em um melhor desempenho do sistema que a fixação da COV. Quanto menor o TDH aplicado, melhor os resultados obtidos na operação do digestor, sugerindo que a eficiência do processo é otimizada em sistemas de alta carga com operação em baixos tempos de detenção hidráulica.


ABSTRACT This study compared the performance of a pilot anaerobic sludge digester under different operating strategies. The influence of increasing organic loading rate - OLR (OP I) and the effect of hydraulic retention time - HRT reduction (OP II and OP III) in anaerobic process were evaluated. The applied loads ranged between 0.5 and 4.5 kgSV.m-3.d-1; HRT was reduced from 15 to 5 days. Production of methane, organic matter degradation and microbial diversity were used to measure and compare the system´s performance. Acclimation periods were taken for each new OLR applied, leading to instabilities in sludge VS and COD removals. The experimental time with HRT between 7 and 5 days showed the highest VS efficiency removals (higher than 70%), which positively influenced process stability. The applied OLR of 2.5 and 3.5 kgVS.m-3.d-1 resulted in higher yields of methane during OP I. CH4 production showed impaired with HRT lower than 7 days, although it was observed active methanogenic microorganisms in the digester. Comparatively, HRT reduction resulted in a better system performance than the increasing OLR approach. The lower HRT applied, the better the results obtained in the operation of the digester, suggesting that the process efficiency is optimized with high load operation at low hydraulic retention times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA