Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cerebellum ; 22(5): 818-824, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35982369

RESUMO

Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is the most common SCA worldwide and comprises about 70% of SCA patients in Brazil. Magnetic resonance imaging (MRI) sequences have been used to describe microstructural abnormalities in many neurodegenerative diseases and helped to reveal the excessive iron accumulation in many of these conditions. This study aimed to characterize brain changes in gray matter (GM) and white matter (WM), detected by voxel-based morphometry (VBM) and relaxometry in patients with SCA3/MJD. A group of consecutive individuals, older than 18 years of age, with symptomatic and genetically proven SCA3/MJD diagnosed, and a control group, were submitted to clinical evaluation and MRI. The images were analyzed using VBM technique and relaxometry. The global assessment of brain volume by region of interest showed a significant difference in GM between SCA3/MJD and normal controls. VBM was used to locate these volumetric changes and it revealed a noticeable difference in the GM of the cerebellum and the brainstem. The global assessment of the brain by relaxometry also showed a significant difference in the comparison of GM between SCA3/MJD and normal controls, detecting noticeable prolongation of T2 time in the medulla oblongata (p < 0.001) and in the pontine tegmentum (p = 0.009) in SCA3/MJD compared to control group. Our study suggests that SCA3/MJD affects the macrostructure of the cerebellum and brainstem and microstructure of pons and medulla oblongata GM, as already demonstrated in the pathological study.


Assuntos
Doença de Machado-Joseph , Ataxias Espinocerebelares , Humanos , Doença de Machado-Joseph/diagnóstico , Ataxias Espinocerebelares/diagnóstico , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Tronco Encefálico
2.
Front Aging Neurosci ; 14: 999288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204553

RESUMO

Introduction: This project aimed to investigate the association between biometric components of metabolic syndrome (MetS) with gray matter volume (GMV) obtained with magnetic resonance imaging (MRI) from a large cohort of community-based adults (n = 776) subdivided by age and sex and employing brain regions of interest defined previously as the "Neural Signature of MetS" (NS-MetS). Methods: Lipid profiles, biometrics, and regional brain GMV were obtained from the Genetics of Brain Structure (GOBS) image archive. Participants underwent T1-weighted MR imaging. MetS components (waist circumference, fasting plasma glucose, triglycerides, HDL cholesterol, and blood pressure) were defined using the National Cholesterol Education Program Adult Treatment Panel III. Subjects were grouped by age: early adult (18-25 years), young adult (26-45 years), and middle-aged adult (46-65 years). Linear regression modeling was used to investigate associations between MetS components and GMV in five brain regions comprising the NS-MetS: cerebellum, brainstem, orbitofrontal cortex, right insular/limbic cluster and caudate. Results: In both men and women of each age group, waist circumference was the single component most strongly correlated with decreased GMV across all NS-MetS regions. The brain region most strongly correlated to all MetS components was the posterior cerebellum. Conclusion: The posterior cerebellum emerged as the region most significantly associated with MetS individual components, as the only region to show decreased GMV in young adults, and the region with the greatest variance between men and women. We propose that future studies investigating neurological effects of MetS and its comorbidities-namely diabetes and obesity-should consider the NS-MetS and the differential effects of age and sex.

3.
Front Psychol ; 8: 57, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184203

RESUMO

Cardiovascular risk (CVR) factors may be associated with poor cognitive functioning in elderlies and impairments in brain structure. Using MRI and voxel-based morphometry (VBM), we assessed regional white matter (WM) volumes in a population-based sample of individuals aged 65-75 years (n = 156), subdivided in three CVR subgroups using the Framingham Risk Score. Cognition was assessed using the Short Cognitive Performance Test. In high-risk subjects, we detected significantly reduced WM volume in the right juxtacortical dorsolateral prefrontal region compared to both low and intermediate CVR subgroups. Findings remained significant after accounting for the presence of the APOEε4 allele. Inhibitory control performance was negatively related to right prefrontal WM volume, proportionally to the degree of CVR. Significantly reduced deep parietal WM was also detected bilaterally in the high CVR subgroup. This is the first large study documenting the topography of CVR-related WM brain volume deficits. The significant association regarding poor response inhibition indicates that prefrontal WM deficits related to CVR are clinically meaningful, since inhibitory control is known to rely on prefrontal integrity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA