Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 91: 853-858, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033320

RESUMO

The development of effective nanoparticle therapeutics has been hindered by their surface characteristics, such as hydrophobicity and charge. Therefore, the success of biomedical applications with nanoparticles is governed by the control of these characteristics. In this article, we report an efficient green capping method for gold nanoparticles (AuNPs) by a reduction with sodium citrate and capping with Virola oleifera (Vo), which is a green exudate rich in polyphenols and flavonoids. The Vo-capped AuNPs were characterized by UV, DLS, FTIR, Raman, TEM, DPPH, FRAP and their cytotoxicity was evaluated on the viability of Murine macrophage cell. The AuNPs had an average particle size of 15 nm and were stable over a long time, as indicated by their unchanged SPR and zeta potential values. These nanoparticles were assessed for their antioxidant potential using DPPH and FRAP and demonstrated the highest antioxidant activities and low cytotoxicity. We propose that the Virola oleifera-capped AuNPs have potential biomedical applications.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas/química , Myristicaceae/química , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Ouro/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Camundongos , Polifenóis/análise , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Nanoscale Res Lett ; 11(1): 465, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27757946

RESUMO

The development of new routes and strategies for nanotechnology applications that only employ green synthesis has inspired investigators to devise natural systems. Among these systems, the synthesis of gold nanoparticles using plant extracts has been actively developed as an alternative, efficient, cost-effective, and environmentally safe method for producing nanoparticles, and this approach is also suitable for large-scale synthesis. This study reports reproducible and completely natural gold nanocrystals that were synthesized using Virola oleifera extract. V. oleifera resin is rich in epicatechin, ferulic acid, gallic acid, and flavonoids (i.e., quercetin and eriodictyol). These gold nanoparticles play three roles. First, these nanoparticles exhibit remarkable stability based on their zeta potential. Second, these nanoparticles are functionalized with flavonoids, and third, an efficient, economical, and environmentally friendly mechanism can be employed to produce green nanoparticles with organic compounds on the surface. Our model is capable of reducing the resin of V. oleifera, which creates stability and opens a new avenue for biological applications. This method does not require painstaking conditions or hazardous agents and is a rapid, efficient, and green approach for the fabrication of monodisperse gold nanoparticles. Graphical Abstract The Virola oleifera reduction method for the synthesis of gold nanoparticles (AuNP's).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA