Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Front Vet Sci ; 9: 842613, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372547

RESUMO

Objective: To evaluate gas exchange, respiratory mechanics, and hemodynamic impact of mechanical ventilation with low tidal volume (VT) in dogs with the use of positive end-expiratory pressure (PEEP) or preceded by alveolar recruitment maneuver (ARM). Study Design: Prospective randomized clinical trial. Animals: Twenty-one healthy client-owned mesocephalic healthy dogs, 1-7 years old, weighing 10-20 kg, and body condition scores 4-6/9 admitted for periodontal treatment. Methods: Isoflurane-anesthetized dogs in dorsal recumbency were ventilated until 1 h with a volume-controlled ventilation mode using 8 mL kg-1 of VT. The dogs were distributed in 2 groups: in the ARM group, PEEP starts in 0 cmH2O, increasing gradually 5 cmH2O every 3 min, until reach 15 cmH2O and decreasing in the same steps until 5 cmH2O, maintaining this value until the end; and PEEP group, in which the pressure 5 cmH2O was instituted from the beginning of anesthesia and maintained the same level up to the end of the anesthesia. Cardiopulmonary, metabolic, oxygenation parameters, and respiratory mechanics were recorded after the anesthesia induction (baseline-BL), 15, 45, and 75 min after BL and during the recovery. Results: The ARM increased the static compliance (Cst) (15 min after baseline) when compared with baseline moment (24.9 ± 5.8 mL cmH20-1 vs. 20.7 ± 5.4 mL cmH20-1-p = 0.0364), oxygenation index (PaO2/FIO2) (505.6 ± 59.2 mmHg vs. 461.2 ± 41.0 mmHg-p = 0.0453) and reduced the shunt fraction (3.4 ± 2.4% vs. 5.5 ± 1.6%-p = 0.062). In the PEEP group, no statistical differences were observed concerning the variables evaluated. At the beginning of the evaluation, the driving pressure (DP) before ARM was significantly greater than all other evaluation time points (6.9 ± 1.8 cmH20). Conclusions and Clinical Relevance: The use of 8 mL kg-1 of VT and 5 cmH20 PEEP without ARM maintain adequate oxygenation and mechanical ventilation in dental surgeries for up to 1 h. The use of ARM slightly improved compliance and oxygenation during the maneuver.

3.
Bol. méd. Hosp. Infant. Méx ; 73(3): 149-165, may.-jun. 2016. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-839028

RESUMO

Resumen: La monitorización respiratoria representa un importante rol en el cuidado del niño con falla respiratoria aguda. Por tanto, su apropiado uso y correcta interpretación (reconociendo qué señales y variables deben ser priorizadas) deberían ayudar a un mejor entendimiento de la fisiopatología de la enfermedad y de los efectos de las intervenciones terapéuticas. Asimismo, la monitorización del paciente ventilado permite, entre otras determinaciones, evaluar diversos parámetros de la mecánica respiratoria, conocer el estado de los diferentes componentes del sistema respiratorio y guiar los ajustes de la terapia ventilatoria. En esta actualización se describe la utilidad de diversas técnicas de monitorización respiratoria (incluyendo métodos convencionales y otros más recientes), se definen conceptos básicos de mecánica ventilatoria, su interpretación y cómo el adecuado análisis de la información puede ocasionar un impacto en el manejo clínico del paciente.


Abstract: Respiratory monitoring plays an important role in the care of children with acute respiratory failure. Therefore, its proper use and correct interpretation (recognizing which signals and variables should be prioritized) should help to a better understanding of the pathophysiology of the disease and the effects of therapeutic interventions. In addition, ventilated patient monitoring, among other determinations, allows to evaluate various parameters of respiratory mechanics, know the status of the different components of the respiratory system and guide the adjustments of ventilatory therapy. In this update, the usefulness of several techniques of respiratory monitoring including conventional respiratory monitoring and more recent methods are described. Moreover, basic concepts of mechanical ventilation, their interpretation and how the appropriate analysis of the information obtained can cause an impact on the clinical management of the patient are defined.

4.
Bol Med Hosp Infant Mex ; 73(3): 149-165, 2016.
Artigo em Espanhol | MEDLINE | ID: mdl-29421202

RESUMO

Respiratory monitoring plays an important role in the care of children with acute respiratory failure. Therefore, its proper use and correct interpretation (recognizing which signals and variables should be prioritized) should help to a better understanding of the pathophysiology of the disease and the effects of therapeutic interventions. In addition, ventilated patient monitoring, among other determinations, allows to evaluate various parameters of respiratory mechanics, know the status of the different components of the respiratory system and guide the adjustments of ventilatory therapy. In this update, the usefulness of several techniques of respiratory monitoring including conventional respiratory monitoring and more recent methods are described. Moreover, basic concepts of mechanical ventilation, their interpretation and how the appropriate analysis of the information obtained can cause an impact on the clinical management of the patient are defined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA