Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Neumol. pediátr. (En línea) ; 17(4): 113-116, 2022. ilus
Artigo em Espanhol | LILACS | ID: biblio-1427361

RESUMO

Las alteraciones de la relación entre la ventilación y el flujo sanguíneo (V/Q) en diversas regiones del pulmón alteran el aporte de oxígeno (O2) y remoción del dióxido de carbono (CO2) al organismo. Fisiológicamente existen diferencias regionales en la relación V/Q. Determinadas patologías pueden alterar esta relación, produciendo tres escenarios distintos: Cortocircuito (Shunt), Alteración V/Q y aumento del espacio muerto. Para evaluar estos escenarios y realizar una aproximación diagnostica son de utilidad el estudio de los gases arteriales y venosos, la diferencia alveolo arterial y la respuesta al suministrar O2


Alterations in the ventilation perfusion relationship (V/Q) in various lung regions alter the supply of oxygen (O2) and the removal of carbon dioxide (CO2) in the body. Physiologically, there are regional differences in the V/Q ratio. Certain pathologies can alter this relationship, producing three different scenarios: Shunt, V/Q mismach and dead space increased. To evaluate these scenarios and carry out a diagnostic approach, it is useful to study arterial and venous gasometry, the alveolar arterial difference and the response to oxygen supplying.


Assuntos
Humanos , Fenômenos Fisiológicos Respiratórios , Relação Ventilação-Perfusão/fisiologia , Gasometria
2.
Ann Intensive Care ; 10(1): 35, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32211957

RESUMO

BACKGROUND: Ventilation/perfusion inequalities impair gas exchange in acute respiratory distress syndrome (ARDS). Although increased dead-space ventilation (VD/VT) has been described in ARDS, its mechanism is not clearly understood. We sought to evaluate the relationships between dynamic variations in VD/VT and extra-pulmonary microcirculatory blood flow detected at sublingual mucosa hypothesizing that an altered microcirculation, which is a generalized phenomenon during severe inflammatory conditions, could influence ventilation/perfusion mismatching manifested by increases in VD/VT fraction during early stages of ARDS. METHODS: Forty-two consecutive patients with early moderate and severe ARDS were included. PEEP was set targeting the best respiratory-system compliance after a PEEP-decremental recruitment maneuver. After 60 min of stabilization, hemodynamics and respiratory mechanics were recorded and blood gases collected. VD/VT was calculated from the CO2 production ([Formula: see text]) and CO2 exhaled fraction ([Formula: see text]) measurements by volumetric capnography. Sublingual microcirculatory images were simultaneously acquired using a sidestream dark-field device for an ulterior blinded semi-quantitative analysis. All measurements were repeated 24 h after. RESULTS: Percentage of small vessels perfused (PPV) and microcirculatory flow index (MFI) were inverse and significantly related to VD/VT at baseline (Spearman's rho = - 0.76 and - 0.63, p < 0.001; R2 = 0.63, and 0.48, p < 0.001, respectively) and 24 h after (Spearman's rho = - 0.71, and - 0.65; p < 0.001; R2 = 0.66 and 0.60, p < 0.001, respectively). Other respiratory, macro-hemodynamic and oxygenation parameters did not correlate with VD/VT. Variations in PPV between baseline and 24 h were inverse and significantly related to simultaneous changes in VD/VT (Spearman's rho = - 0.66, p < 0.001; R2 = 0.67, p < 0.001). CONCLUSION: Increased heterogeneity of microcirculatory blood flow evaluated at sublingual mucosa seems to be related to increases in VD/VT, while respiratory mechanics and oxygenation parameters do not. Whether there is a cause-effect relationship between microcirculatory dysfunction and dead-space ventilation in ARDS should be addressed in future research.

3.
Adv Physiol Educ ; 42(4): 655-660, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387699

RESUMO

Undergraduate biomedical students often have difficulties in understanding basic concepts of respiratory physiology, particularly respiratory mechanics. In this study, we report the use of electrical impedance tomography (EIT) to improve and consolidate the knowledge about physiological aspects of normal regional distribution of ventilation in humans. Initially, we assessed the previous knowledge of a group of medical students ( n = 39) about regional differences in lung ventilation. Thereafter, we recorded the regional distribution of ventilation through surface electrodes on a healthy volunteer adopting four different decubitus positions: supine, prone, and right and left lateral. The recordings clearly showed greater pulmonary ventilation in the dependent lung, mainly in the lateral decubitus. Considering the differences in pulmonary ventilation between right and left lateral decubitus, only 33% of students were able to notice it correctly beforehand. This percentage increased to 84 and 100%, respectively ( P < 0.01), after the results of the ventilation measurements obtained with EIT were examined and discussed. A self-assessment questionnaire showed that students considered the practical activity as an important tool to assist in the understanding of the basic concepts of respiratory mechanics. Experimental demonstration of the physiological variations of regional lung ventilation in volunteers by using EIT is feasible, effective, and stimulating for undergraduate medical students. Therefore, this practical activity may help faculty and students to overcome the challenges in the field of respiratory physiology learning.


Assuntos
Educação Médica/métodos , Impedância Elétrica , Fisiologia/educação , Ventilação Pulmonar/fisiologia , Estudantes de Medicina , Tomografia/métodos , Compreensão/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA