Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35432492

RESUMO

Background: A new pit viper, Protobothrops kelomohy, has been recently discovered in northern and northwestern Thailand. Envenoming by the other Protobothrops species across several Asian countries has been a serious health problem since their venom is highly hematotoxic. However, the management of P. kelomohy bites is required as no specific antivenom is available. This study aimed to investigate the biochemical properties and proteomes of P. kelomohy venom (PKV), including the cross-neutralization to its lethality with antivenoms available in Thailand. Methods: PKV was evaluated for its neutralizing capacity (ER50), lethality (LD50), procoagulant and hemorrhagic effects with three monovalent antivenoms (TAAV, DSAV, and CRAV) and one polyvalent (HPAV) hematotoxic antivenom. The enzymatic activities were examined in comparison with venoms of Trimeresurus albolabris (TAV), Daboia siamensis (DSV), Calloselasma rhodostoma (CRV). Molecular mass was separated on SDS-PAGE, then the specific proteins were determined by western blotting. The venom protein classification was analyzed using mass spectrometry-based proteomics. Results: Intravenous LD50 of PKV was 0.67 µg/g. ER50 of HPAV, DSAV and TAAV neutralize PKV at 1.02, 0.36 and 0.12 mg/mL, respectively. PKV exhibited procoagulant effect with a minimal coagulation dose of 12.5 ± 0.016 µg/mL and hemorrhagic effect with a minimal hemorrhagic dose of 1.20 ± 0.71 µg/mouse. HPAV was significantly effective in neutralizing procoagulant and hemorrhagic effects of PKV than those of TAAV, DSAV and CRAV. All enzymatic activities among four venoms exhibited significant differences. PKV proteome revealed eleven classes of putative snake venom proteins, predominantly metalloproteinase (40.85%), serine protease (29.93%), and phospholipase A2 (15.49%). Conclusions: Enzymatic activities of PKV are similarly related to other viperid venoms in this study by quantitatively hematotoxic properties. Three major venom toxins were responsible for coagulopathy in PKV envenomation. The antivenom HPAV was considered effective in neutralizing the lethality, procoagulant and hemorrhagic effects of PKV.

2.
Toxicon ; 207: 31-42, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34968566

RESUMO

The Peruvian rattlesnake Crotalus durissus is a venomous species that is restricted to the Peruvian Departments of Puno and Madre de Dios. Although clinically meaningful in this region, Crotalus durissus venom composition remains largely elusive. In this sense, this work aimed to provide a primary description of Peruvian C. durissus venom (PCdV). The enzymatic activities (SVMP, SVSP, LAAO, Hyaluronidase and PLA2) of PCdV were analyzed and compared to Brazilian Crotalus durissus terrificus venom (BCdtV). PCdV showed higher PLA2 activity when compared to the Brazilian venom. PCdV also showed cytotoxicity in VERO cells. For proteomic analysis, PCdV proteins were separated by HPLC, followed by SDS-PAGE. Gel bands were excised and tryptic digested for MALDI-TOF/TOF identification. Approximately 21 proteins were identified, belonging to 7 families. Phospholipases A2 (PLA2, 66.63%) were the most abundant proteins of the venom, followed by snake venom serine proteinases (SVSPs, 13.37%), C-type lectins (Snaclec, 8.98%) and snake venom metalloproteinases (SVMPs, 7.13%), crotamine (2.98%) and phosphodiesterase (PDE, 0.87%). Moreover, antivenom recognition assays indicated that both Brazilian and Peruvian antivenoms recognize PCdV, indicating the presence of antigenically related proteins in crotalic venoms. The results reported here, may impact in the venom selection for the production of effective Pan-American crotalic antivenom.


Assuntos
Venenos de Crotalídeos , Crotalus , Animais , Antivenenos , Chlorocebus aethiops , Venenos de Crotalídeos/toxicidade , Humanos , Peru , Proteômica , Células Vero
3.
J. venom. anim. toxins incl. trop. dis ; 28: e20210080, 2022. graf, tab
Artigo em Inglês | VETINDEX | ID: biblio-1395757

RESUMO

Background: A new pit viper, Protobothrops kelomohy, has been recently discovered in northern and northwestern Thailand. Envenoming by the other Protobothrops species across several Asian countries has been a serious health problem since their venom is highly hematotoxic. However, the management of P. kelomohy bites is required as no specific antivenom is available. This study aimed to investigate the biochemical properties and proteomes of P. kelomohy venom (PKV), including the cross-neutralization to its lethality with antivenoms available in Thailand. Methods: PKV was evaluated for its neutralizing capacity (ER50), lethality (LD50), procoagulant and hemorrhagic effects with three monovalent antivenoms (TAAV, DSAV, and CRAV) and one polyvalent (HPAV) hematotoxic antivenom. The enzymatic activities were examined in comparison with venoms of Trimeresurus albolabris (TAV), Daboia siamensis (DSV), Calloselasma rhodostoma (CRV). Molecular mass was separated on SDS-PAGE, then the specific proteins were determined by western blotting. The venom protein classification was analyzed using mass spectrometry-based proteomics. Results: Intravenous LD50 of PKV was 0.67 µg/g. ER50 of HPAV, DSAV and TAAV neutralize PKV at 1.02, 0.36 and 0.12 mg/mL, respectively. PKV exhibited procoagulant effect with a minimal coagulation dose of 12.5 ± 0.016 µg/mL and hemorrhagic effect with a minimal hemorrhagic dose of 1.20 ± 0.71 µg/mouse. HPAV was significantly effective in neutralizing procoagulant and hemorrhagic effects of PKV than those of TAAV, DSAV and CRAV. All enzymatic activities among four venoms exhibited significant differences. PKV proteome revealed eleven classes of putative snake venom proteins, predominantly metalloproteinase (40.85%), serine protease (29.93%), and phospholipase A2 (15.49%). Conclusions: Enzymatic activities of PKV are similarly related to other viperid venoms in this study by quantitatively hematotoxic properties. Three major venom toxins were responsible for coagulopathy in PKV envenomation. The antivenom HPAV was considered effective in neutralizing the lethality, procoagulant and hemorrhagic effects of PKV.(AU)


Assuntos
Animais , Venenos de Víboras/análise , Fenômenos Bioquímicos/fisiologia , Proteômica/métodos , Tailândia , Antivenenos/análise
4.
J Proteomics ; 187: 171-181, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30048773

RESUMO

In order to determine Bothriopsis bilineata smaragdina venom (BbsV) composition, proteomic approaches were performed. Venom components were analyzed by RP-HPLC, SDS- PAGE and nano LC on line with LTQ Orbitrap XL. Results showed a total of 189 identified proteins, grouped into 11 different subgroups, which include snake venom metalloproteinases (SVMPs, 54.67%), snake C-type lectins (Snaclecs, 15.78%), snake venom serine proteinases (SVSPs, 14.69%), cystein-rich secretory proteins (CRISP, 2.61%), phospholipases A2 (PLA2, 1.14%), phosphodiesterase (PDE, 1.17%), venom endothelial growth factor (VEGF, 1.06%) 5'nucleotidases (0.33%), L-amino acid oxidases (LAAOs, 0.28%) and other proteins. In vitro enzymatic activities (SVMP, SVSP, LAAO, Hyal and PLA2) of BbsV were also analyzed. BbsV showed high SVSP activity but low PLA2 activity, when compared to other Bothrops venoms. In vivo, BbsV induced hemorrhage and edema in mice and showed intraperitoneal median lethal dose (LD50) of 92.74 (± 0.15) µg/20 g of mice. Furthermore, BbsV reduced cell viability when incubated with VERO cells. Peruvian and Brazilian bothropic antivenoms recognize BbsV proteins, as detected by ELISA and Western Blotting. Both antivenoms were able to neutralize in vivo edema and hemorrhage. SIGNIFICANCE: In Peru, snakebite is a public health problem, especially in the rain forest, as a result of progressive colonization of this geographical area. This country is the second in Latin America, after Brazil, to exhibit the largest variety of venomous snakes. B. atrox and B. b. smaragdina snakes are sympatric species in Peruvian Amazon region and are responsible for approximately 95% of the envenomings reported in this region. B. b. smaragdina may cause a smaller share (3 to 38%) of those accidents, due to its arboreal habits, that make human encounters with these snakes less likely to happen. Despite B. b. smaragdina recognized medical importance, its venom composition and biological activities have been poorly studied. Furthermore, BbsV is not a component of the antigenic pool used to produce the corresponding Peruvian bothropic antivenom (P-BAV). Our results not only provide new insights on BbsV composition and biological activity, but also demonstrate that both P-BAV and B-BAV polyvalent antivenoms have a considerable recognition of proteins from BbsV and, more importantly, neutralized hemorrhage and edema, the main local effects of bothropic envenomation.


Assuntos
Antivenenos/análise , Bothrops , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/metabolismo , Venenos de Crotalídeos/farmacologia , Animais , Antivenenos/metabolismo , Chlorocebus aethiops , Venenos de Crotalídeos/análise , Feminino , Hemorragia/induzido quimicamente , Hemorragia/patologia , L-Aminoácido Oxidase/análise , L-Aminoácido Oxidase/metabolismo , Dose Letal Mediana , Metaloproteases/análise , Metaloproteases/metabolismo , Camundongos , Peru , Fosfolipases A2/análise , Fosfolipases A2/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica , Serina Proteases/análise , Serina Proteases/metabolismo , Células Vero
5.
J Proteome Res ; 16(9): 3370-3390, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28731347

RESUMO

Adult rattlesnakes within genus Crotalus express one of two distinct venom phenotypes, type I (hemorrhagic) and type II (neurotoxic). In Costa Rican Central American rattlesnake, ontogenetic changes in the concentration of miRNAs modulate venom type II to type I transition. Venomics and venom gland transcriptome analyses showed that adult C. simus and C. tzabcan expressed intermediate patterns between type II and type I venoms, whereas C. culminatus had a canonical type I venom. Neonate/juvenile and adult Mexican rattlesnakes showed notable inter- and intraspecific variability in the number, type, abundance and ontogenetic shifts of the transcriptional and translational venom gland activities. These results support a role for miRNAs in the ontogenetic venom compositional changes in the three congeneric Mexican rattlesnakes. It is worth noting the finding of dual-action miRNAs, which silence the translation of neurotoxic heterodimeric PLA2 crotoxin and acidic PLA2 mRNAs while simultaneously up-regulating SVMP-targeting mRNAs. Dual transcriptional regulation potentially explains the existence of mutually exclusive crotoxin-rich (type-II) and SVMP-rich (type-I) venom phenotypic dichotomy among rattlesnakes. Our results support the hypothesis that alterations of the distribution of miRNAs, modulating the translational activity of venom gland toxin-encoding mRNAs in response to an external cue, may contribute to the mechanism generating adaptive venom variability.


Assuntos
Venenos de Crotalídeos/genética , Crotalus/genética , MicroRNAs/genética , Proteogenômica/métodos , Proteoma/genética , Transcriptoma , Fatores Etários , Animais , Sequência de Bases , Cromatografia de Fase Reversa/métodos , Venenos de Crotalídeos/biossíntese , Venenos de Crotalídeos/classificação , Venenos de Crotalídeos/isolamento & purificação , Crotalus/crescimento & desenvolvimento , Crotalus/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Variação Genética , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Biossíntese de Proteínas , Proteogenômica/instrumentação , Proteoma/metabolismo , Especificidade da Espécie
6.
J Proteomics ; 135: 73-89, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25968638

RESUMO

Bothrops jararaca is a slender and semi-arboreal medically relevant pit viper species endemic to tropical and subtropical forests in southern Brazil, Paraguay, and northern Argentina (Misiones). Within its geographic range, it is often abundant and is an important cause of snakebite. Although no subspecies are currently recognized, geographic analyses have revealed the existence of two well-supported B. jararaca clades that diverged during the Pliocene ~3.8Mya and currently display a southeastern (SE) and a southern (S) Atlantic rainforest (Mata Atlântica) distribution. The spectrum, geographic variability, and ontogenetic changes of the venom proteomes of snakes from these two B. jararaca phylogroups were investigated applying a combined venom gland transcriptomic and venomic analysis. Comparisons of the venom proteomes and transcriptomes of B. jararaca from the SE and S geographic regions revealed notable interpopulational variability that may be due to the different levels of population-specific transcriptional regulation, including, in the case of the southern population, a marked ontogenetic venom compositional change involving the upregulation of the myotoxic PLA2 homolog, bothropstoxin-I. This population-specific marker can be used to estimate the proportion of venom from the southern population present in the B. jararaca venom pool used for the Brazilian soro antibotrópico (SAB) antivenom production. On the other hand, the southeastern population-specific D49-PLA2 molecules, BinTX-I and BinTX-II, lend support to the notion that the mainland ancestor of Bothrops insularis was originated within the same population that gave rise to the current SE B. jararaca phylogroup, and that this insular species endemic to Queimada Grande Island (Brazil) expresses a pedomorphic venom phenotype. Mirroring their compositional divergence, the two geographic B. jararaca venom pools showed distinct bioactivity profiles. However, the SAB antivenom manufactured in Vital Brazil Institute neutralized the lethal effect of both venoms to a similar extent. In addition, immobilized SAB antivenom immunocaptured most of the venom components of the venoms of both B. jararaca populations, but did not show immunoreactivity against vasoactive peptides. The Costa Rican bothropic-crotalic-lachesic (BCL) antivenom showed the same lack of reactivity against vasoactive peptides but, in addition, was less efficient immunocapturing PI- and PIII-SVMPs from the SE venom, and bothropstoxin-I, a CRISP molecule, and a D49-PLA2 from the venom of the southern B. jararaca phylogroup. The remarkable paraspecificity exhibited by the Brazilian and the Costa Rican antivenoms indicates large immunoreactive epitope conservation across the natural history of Bothrops, a genus that has its roots in the middle Miocene. This article is part of a Special Issue entitled: Omics Evolutionary Ecolog.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/biossíntese , Glândulas Exócrinas/metabolismo , Perfilação da Expressão Gênica , Floresta Úmida , Transcriptoma/fisiologia , Animais
7.
J Proteomics ; 114: 93-114, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25462430

RESUMO

The Caatinga lancehead, Bothrops erythromelas, is a medically relevant species, responsible for most of the snakebite accidents in most parts of its distribution range in northeastern Brazil. The spectrum and geographic variability of its venom toxins were investigated applying a venomics approach to venom pools from five geographic areas within the Caatinga ecoregion. Despite its wide habitat, populations of B. erythromelas from Ceará, Pernambuco, Juazeiro, Paraiba, and Ilha de Itaparica exhibit highly conserved venom proteomes. Mirroring their compositional conservation, the five geographic venom pools also showed qualitatively and quantitatively overlapping antivenomic profiles against antivenoms generated in Vital Brazil (BR) and Clodomiro Picado (CR) Institutes, using different venoms in the immunization mixtures. The paraspecificity exhibited by the Brazilian SAB and the Costa Rican BCL antivenoms against venom toxins from B. erythromelas indicates large immunoreactive epitope conservation across genus Bothrops during the last ~14 million years, thus offering promise for the possibility of generating a broad-spectrum bothropic antivenom. Biological Significance Accidental snakebite envenomings represent an important public health hazard in Brazil. Ninety per cent of the yearly estimated 20-30,000 snakebite accidents are caused by species of the Bothrops genus. Bothrops erythromelas, a small, moderately stocky terrestrial venomous snake, is responsible for most of the snakebite accidents in its broad distribution range in the Caatinga, a large ecoregion in northeastern Brazil. To gain a deeper insight into the spectrum of medically important toxins present in the venom of the Caatinga lancehead, we applied a venomics approach to define the proteome and geographic variability of adult B. erythromelas venoms from five geographic regions. Although intraspecific compositional variation between venoms among specimens from different geographic regions has long been appreciated by herpetologists and toxinologists as a general feature of highly adaptable and widely distributed snake species, the five B. erythromelas populations investigated exhibit highly conserved venom proteomes. The overall toxin profile of the Caatinga lancehead's venom explains the local and systemic effects observed in envenomations by B. erythromelas. The five geographic venom pools sampled also showed qualitatively and quantitatively overlapping antivenomic profiles against antivenoms generated using different bothropic venoms in the immunization mixtures. The large immunoreactive epitope conservation across genus Bothrops offers promise for the generation of a broad-spectrum bothropic antivenom.


Assuntos
Antivenenos/metabolismo , Bothrops/metabolismo , Venenos de Crotalídeos/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Animais , Antivenenos/análise , Bothrops/classificação , Brasil , Cromatografia Líquida de Alta Pressão , Venenos de Crotalídeos/análise , Venenos de Crotalídeos/imunologia , Ecossistema , Eletroforese em Gel Bidimensional , Fragmentos de Peptídeos/análise , Proteoma/análise , Especificidade da Espécie
8.
J. Proteomics ; 74(9): 1795-1809, Apr 12 , 2011.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1063780

RESUMO

The venom proteomes of Micrurus altirostris and M. corallinus were analyzed by combining snake venomics and venom gland transcriptomic surveys. In both coral snake species, 3FTx and PLA2 were the most abundant and diversified toxin families. 33 different 3FTxs and 13 PLA2 proteins, accounting respectively for 79.5% and 13.7% of the total proteins, were identified in the venom of M. altirostris. The venom of M. corallinus comprised 10 3FTx (81.7% of the venom proteome) and 4 (11.9%) PLA2 molecules. Transcriptomic data provided the full-length amino acid sequences of 18 (M. altirostris) and 10 (M. corallinus) 3FTxs, and 3 (M. altirostris) and 1 (M. corallinus) novel PLA2 sequences. In addition, venom from each species contained single members of minor toxin families: 3 common (PIII-SVMP, C-type lectin-like, L-amino acid oxidase) and 4 species-specific (CRISP, Kunitz-type inhibitor, lysosomal acid lipase in M. altirostris; serine proteinase in M. corallinus) toxin classes.


Assuntos
Animais , Elapidae/classificação , Elapidae/genética , Venenos Elapídicos/análise , Venenos de Serpentes/intoxicação , Espectrometria de Massas/métodos , Proteômica/métodos , Transcriptoma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA