Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(1): 125-132, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052769

RESUMO

Varicella-zoster virus (VZV), a member of the Alphaherpesvirinae subfamily, causes varicella in primary infections and establishing a latent stage in sensory ganglia. Upon reactivation, VZV causes herpes zoster with severe neuralgia, especially in elderly patients. The mutation rate for VZV is comparatively lower than the other members of other alpha herpesviruses. Due to geographic isolation, different genotypes of VZV are circulating on separate continents. Here, we successfully isolated a VZV from the vesicular fluid of a youth zoster patient. Based on the single-nucleotide polymorphism profiles of different open reading frames that define the genotype, this newly isolated VZV primarily represents genotype clade 2 but also has characteristics of genotype clade 1. The next-generation sequencing provided a nearly full-length sequence, and further phylogenetic analysis revealed that this VZV isolate is distinct from clades 1 and 2. The Recombination Detection Program indicates that a possible recombinant event may occur between the VZV isolate and clade 1. In summary, we found that there is a circulating VZV isolate in China that may represent a recombinant between clade 1 and clade 2, providing new concerns that need to be considered in the future VZV vaccination program.


Assuntos
Herpes Zoster , Herpesvirus Humano 3 , Adolescente , Humanos , Idoso , Herpesvirus Humano 3/genética , Filogenia , Polimorfismo de Nucleotídeo Único , China , Recombinação Genética , Genômica
2.
Curr Res Microb Sci ; 4: 100192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273578

RESUMO

Human herpesviruses are enveloped viruses with double-stranded linear DNA genomes highly prevalent in the human population. These viruses are subdivided into three subfamilies, namely alphaherpesvirinae (herpes simplex virus type 1, HSV-1; herpes simplex virus type 2, HSV-2; and varicella-zoster virus, VZV), betaherpesvirinae (human cytomegalovirus, HCMV; human herpesvirus 6, HHV-6; and human herpesvirus 7, HHV-7) and gammaherpesvirinae (Epstein-Barr virus, EBV; and Kaposi's sarcoma-associated herpesvirus, KSHV). Besides encoding numerous molecular determinants to evade the host antiviral responses, these viruses also modulate cellular metabolic processes to promote their replication. Here, we review and discuss existing studies describing an interplay between carbohydrate metabolism and the replication cycle of herpesviruses, altogether highlighting potentially new molecular targets based on these interactions that could be used to block herpesvirus infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA