Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mem. Inst. Oswaldo Cruz ; 119: e230040, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1558560

RESUMO

BACKGROUND The availability of genes and protein sequences for parasites has provided valuable information for drug target identification and vaccine development. One such parasite is Bartonella quintana, a Gram-negative, intracellular pathogen that causes bartonellosis in mammalian hosts. OBJECTIVE Despite progress in understanding its pathogenesis, limited knowledge exists about the virulence factors and regulatory mechanisms specific to B. quintana. METHODS AND FINDINGS To explore these aspects, we have adopted a subtractive proteomics approach to analyse the proteome of B. quintana. By subtractive proteins between the host and parasite proteome, a set of proteins that are likely unique to the parasite but absent in the host were identified. This analysis revealed that out of the 1197 protein sequences of the parasite, 660 proteins are non-homologous to the human host. Further analysis using the Database of Essential Genes predicted 159 essential proteins, with 28 of these being unique to the pathogen and predicted as potential putative targets. Subcellular localisation of the predicted targets revealed 13 cytoplasmic, eight membranes, one periplasmic, and multiple location proteins. The three-dimensional structure and B cell epitopes of the six membrane antigenic protein were predicted. Four B cell epitopes in KdtA and mraY proteins, three in lpxB and BQ09550, whereas the ftsl and yidC proteins were located with eleven and six B cell epitopes, respectively. MAINS CONCLUSIONS This insight prioritises such proteins as novel putative targets for further investigations on their potential as drug and vaccine candidates.

2.
Clin Exp Allergy ; 53(8): 821-832, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36779555

RESUMO

BACKGROUND: Allergen-specific immunotherapy (AIT) is the only disease-modifying treatment approach to change disease-causing allergens. Hypoallergenic derivatives show promise as potential therapeutics, amongst which BTH2 was designed to induce tolerance against Blomia tropicalis allergy. Our aim was to investigate the hypoallergenicity and immunoregulatory activity of BTH2 in vitro and its therapeutic potential in a mouse model of AIT. METHODS: Recombinant Blo t 5 and Blo t 21 allergens and their hybrid derivatives (BTH1 and BTH2) were expressed and purified. IgE binding capacity was tested by ELISA using sera from Brazilian, Colombian, and Ecuadorian subjects. Secretion of cytokines in supernatants from human cell cultures was measured following stimulation with the four recombinants and controls. The capacity of BTH2 to ameliorate allergic airway inflammation induced by B. tropicalis extract was evaluated in a murine model of AIT. RESULTS: rBlo t 5 and rBlo t 21 were identified as major allergens in Latin American patients, and BTH2 had the lowest IgE binding. In vitro stimulation of human cells induced greater levels of IL-10 and IFN-γ and reduced the secretion of Th2 cytokines. BTH2 ameliorated allergic airway inflammation in B. tropicalis-challenged A/J mice, as evidenced by the histopathological and humoral biomarkers: decreased Th2 cytokines and cellular infiltration (especially eosinophils), lower activity of eosinophil peroxidase, an increase in IgG blocking antibodies and strong reduction of mucus production by goblet cells. CONCLUSIONS: Our study shows that BTH2 represents a promising candidate for the treatment of B. tropicalis allergy with hypoallergenic, immune regulatory and therapeutic properties. Further pre-clinical studies are required in murine models of chronic asthma to further address the efficacy and safety of BTH2 as a vaccine against B. tropicalis-induced allergy.


Assuntos
Hipersensibilidade , Humanos , Camundongos , Animais , Modelos Animais de Doenças , Hipersensibilidade/terapia , Alérgenos , Inflamação , Citocinas , Dessensibilização Imunológica , Imunoglobulina E
3.
Front Immunol ; 13: 1020159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248791

RESUMO

The emergency of new SARS-CoV-2 variants that feature increased immune escape marks an urgent demand for better vaccines that will provide broader immunogenicity. Here, we evaluated the immunogenic capacity of vaccine candidates based on the recombinant trimeric spike protein (S) of different SARS-CoV-2 variants of concern (VOC), including the ancestral Wuhan, Beta and Delta viruses. In particular, we assessed formulations containing either single or combined S protein variants. Our study shows that the formulation containing the single S protein from the ancestral Wuhan virus at a concentration of 2µg (SW2-Vac 2µg) displayed in the mouse model the highest IgG antibody levels against all the three (Wuhan, Beta, and Delta) SARS-CoV-2 S protein variants tested. In addition, this formulation induced significantly higher neutralizing antibody titers against the three viral variants when compared with authorized Gam-COVID-Vac-rAd26/rAd5 (Sputnik V) or ChAdOx1 (AstraZeneca) vaccines. SW2-Vac 2µg was also able to induce IFN-gamma and IL-17, memory CD4 populations and follicular T cells. Used as a booster dose for schedules performed with different authorized vaccines, SW2-Vac 2µg vaccine candidate also induced higher levels of total IgG and IgG isotypes against S protein from different SARS-CoV-2 variants in comparison with those observed with homologous 3-dose schedule of Sputnik V or AstraZeneca. Moreover, SW2-Vac 2µg booster induced broadly strong neutralizing antibody levels against the three tested SARS-CoV-2 variants. SW2-Vac 2µg booster also induced CD4+ central memory, CD4+ effector and CD8+ populations. Overall, the results demonstrate that SW2-Vac 2 µg is a promising formulation for the development of a next generation COVID-19 vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Imunoglobulina G , Interleucina-17 , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
4.
BMC Immunol ; 22(1): 79, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922462

RESUMO

BACKGROUND: Interleukin (IL)-15 is a proinflammatory T-cell growth factor overexpressed in several autoimmune diseases such as rheumatoid arthritis. Our initial strategy to neutralize the increased levels of IL-15 consisted in a vaccine candidate based on the recombinant modified human IL-15 (mhIL-15) mixed with the alum adjuvant. A previous study in non-human primates Macaca fascicularis has shown that vaccination induces neutralizing antibodies against native IL-15, without affecting animal behavior, clinical status, or the percentage of IL-15-dependent cell populations. However, the mhIL-15 used as an antigen was active in the IL-2-dependent cytotoxic T-cell line CTLL-2, which could hinder its therapeutic application. The current article evaluated the immunogenicity in African green monkeys of a vaccine candidate based on IL-15 mutant D8SQ108S, an inactive form of human IL-15. RESULTS: IL-15 D8SQ108S was inactive in the CTLL-2 bioassay but was able to competitively inhibit the biological activity of human IL-15. Immunization with 200 µg of IL-15 mutant combined with alum elicited anti-IL-15 IgG antibodies after the second and third immunizations. The median values of anti-IL-15 antibody titers were slightly higher than those generated in animals immunized with 200 µg of mhIL-15. The highest antibody titers were induced after the third immunization in monkeys vaccinated with 350 µg of IL-15 D8SQ108S. In addition, sera from immunized animals inhibited the biological activity of human IL-15 in CTLL-2 cells. The maximum neutralizing effect was observed after the third immunization in sera of monkeys vaccinated with the highest dose of the IL-15 mutant. These sera also inhibited the proliferative activity of simian IL-15 in the CTLL-2 bioassay and did not affect the IL-2-induced proliferation of the aforementioned T-cell line. Finally, it was observed that vaccination neither affects the animal behavior nor the general clinical parameters of immunized monkeys. CONCLUSION: Immunization with inactive IL-15 D8SQ108S mixed with alum generated neutralizing antibodies specific for human IL-15 in African green monkeys. Based on this fact, the current vaccine candidate could be more effective than the one based on biologically active mhIL-15 for treating autoimmune disorders involving an uncontrolled overproduction of IL-15.


Assuntos
Interleucina-15/imunologia , Linfócitos T/imunologia , Vacinas/imunologia , Compostos de Alúmen , Animais , Anticorpos Neutralizantes/metabolismo , Proliferação de Células , Chlorocebus aethiops , Citotoxicidade Imunológica , Humanos , Imunização , Imunogenicidade da Vacina , Interleucina-15/genética , Camundongos , Mutação/genética
5.
J Gen Virol ; 102(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34878970

RESUMO

Although RNA viruses have high mutation rates, host cells and organisms work as selective environments, maintaining the viability of virus populations by eliminating deleterious genotypes. In serial passages of RNA viruses in a single cell line, most of these selective bottlenecks are absent, with no virus circulation and replication in different tissues or host alternation. In this work, Aedes aegypti Aag-2 cells were accidentally infected with Chikungunya virus (CHIKV) and Mayaro virus (MAYV). After numerous passages to achieve infection persistency, the infectivity of these viruses was evaluated in Ae. albopictus C6/36 cells, African green monkey Vero cells and primary-cultured human fibroblasts. While these CHIKV and MAYV isolates were still infectious to mosquito cells, they lost their ability to infect mammalian cells. After genome sequencing, it was observed that CHIKV accumulated many nonsynonymous mutations and a significant deletion in the coding sequence of the hypervariable domain in the nsP3 gene. Since MAYV showed very low titres, it was not sequenced successfully. Persistently infected Aag-2 cells also accumulated high loads of short and recombinant CHIKV RNAs, which seemed to have been originated from virus-derived DNAs. In conclusion, the genome of this CHIKV isolate could guide mutagenesis strategies for the production of attenuated or non-infectious (to mammals) CHIKV vaccine candidates. Our results also reinforce that a paradox is expected during passages of cells persistently infected by RNA viruses: more loosening for the development of more diverse virus genotypes and more pressure for virus specialization to this constant cellular environment.


Assuntos
Vírus Chikungunya/crescimento & desenvolvimento , Vírus Chikungunya/genética , Genoma Viral/genética , Alphavirus/genética , Alphavirus/crescimento & desenvolvimento , Animais , Linhagem Celular , Culicidae , Especificidade de Hospedeiro , Humanos , Mamíferos , Mutação , RNA Viral/genética , Carga Viral/genética , Proteínas não Estruturais Virais/genética , Replicação Viral/genética
6.
Genes (Basel) ; 12(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34828264

RESUMO

The Plasmodium vivax Cysteine-Rich Protective Antigen (PvCyRPA) has an important role in erythrocyte invasion and has been considered a target for vivax malaria vaccine development. Nonetheless, its genetic diversity remains uncharted in Brazilian malaria-endemic areas. Therefore, we investigated the pvcyrpa genetic polymorphism in 98 field isolates from the Brazilian Amazon and its impact on the antigenicity of predicted B-cell epitopes. Genetic diversity parameters, population genetic analysis, neutrality test and the median-joining network were analyzed, and the potential amino acid polymorphism participation in B-cell epitopes was investigated. One synonymous and 26 non-synonymous substitutions defined fifty haplotypes. The nucleotide diversity and Tajima's D values varied across the coding gene. The exon-1 sequence had greater diversity than those of exon-2. Concerning the prediction analysis, seven sequences were predicted as linear B cell epitopes, the majority contained in conformational epitopes. Moreover, important amino acid polymorphism was detected in regions predicted to contain residues participating in B-cell epitopes. Our data suggest that the pvcyrpa gene presents a moderate polymorphism in the studied isolates and such polymorphisms alter amino acid sequences contained in potential B cell epitopes, an important observation considering the antigen potentiality as a vaccine candidate to cover distinct P. vivax endemic areas worldwide.


Assuntos
Antígenos de Protozoários/genética , Plasmodium vivax/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil/epidemiologia , Cisteína/química , Cisteína/genética , Feminino , Variação Genética , Genética Populacional , Geografia , Humanos , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Malária Vivax/prevenção & controle , Masculino , Pessoa de Meia-Idade , Plasmodium vivax/imunologia , Plasmodium vivax/isolamento & purificação , Polimorfismo Genético , Proteínas de Protozoários/genética , Análise de Sequência de DNA , Desenvolvimento de Vacinas , Adulto Jovem
7.
Rev. Soc. Bras. Med. Trop ; Rev. Soc. Bras. Med. Trop;54: e00172021, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1288068

RESUMO

Abstract INTRODUCTION: Tuberculosis (TB) is the leading cause of death worldwide caused by a single infectious disease agent. Brazil, Russia, India, China, and South Africa (BRICS) account for more than half of the world's TB cases. Bacillus Calmette-Guérin (BCG) remains the only vaccine available despite its variable efficacy. Promising antigen-based vaccines have been proposed as prophylactic and/or immunotherapeutic approaches to boost BCG vaccination. Relevant antigens must interact with the range of human leukocyte antigen (HLA) molecules present in target populations; yet this information is currently not available. METHODS: MEDLINE and EMBASE were systematically searched for articles published during 2013-2020 to measure the allelic frequencies of HLA-DRB1 in the BRICS. RESULTS: In total, 67 articles involving 3,207,861 healthy individuals were included in the meta-analysis. HLA-DRB1 alleles *03, *04, *07, *11, *13, and *15 were consistently identified at high frequencies across the BRICS, with a combined estimated frequency varying from 52% to 80%. HLA-DRB1 alleles *01, *08, *09, *10, *12, and *14 were found to be relevant in only one or two BRICS populations. CONCLUSIONS: By combining these alleles, it is possible to ensure at least 80% coverage throughout the BRICS populations.


Assuntos
Humanos , Tuberculose , África do Sul , Brasil , China , Federação Russa , Alelos , Cadeias HLA-DRB1/genética , Índia
8.
Vaccines (Basel) ; 9(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374172

RESUMO

E2CD154 is a novel subunit vaccine candidate against classical swine fever virus (CSFV). It contains the E2 envelope protein from CSFV fused to the porcine CD154 molecule formulated in the oil adjuvant MontanideTM ISA50 V2. Previous works evidenced the safety and immunogenicity of this candidate. Here, two other important parameters related to vaccine efficacy were assessed. First, the existence of high maternally derived antibody (MDA) titers in piglets born to sows vaccinated with E2CD154 was demonstrated. These MDA titers remained above 1:200 during the first seven weeks of life. To assess whether the titers interfere with active vaccination, 79 piglets from sows immunized with either E2CD154 or a modified live vaccine were vaccinated with E2CD154 following a 0-21-day biphasic schedule. Animals immunized at either 15, 21, or 33 days of age responded to vaccination by eliciting protective neutralizing antibody (NAb) titers higher than 1:600, with a geometric mean of 1:4335, one week after the booster. Those protective levels of NAb were sustained up to six months of age. No vaccination-related adverse effects were described. As a conclusion, E2CD154 is able to induce protective NAb in piglets with different MDA levels and at different days of age.

9.
Vaccines (Basel) ; 8(4)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217916

RESUMO

COVID-19, a global pandemic causing to date more than 50 million cases and more than a million deaths, has to be controlled. SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) was identified as the causative agent. Controversy about this virus origin and infectious mechanism for adapting to humans remains a matter for discussion. Among all strategies for obtaining safe and potent vaccines, approaches based on attenuated-killed virus and non-replicating RNA viral vectors are demonstrating promising results. However, specificity of viral components targeted by human antibodies so far has not been demonstrated. A consistent strategy for obtaining functional-active antigens from SARS-CoV-2 specific ligands lead us to propose and test a number of synthetic components. From hundreds of starting sequences only fifteen fulfilled the design requirements and were produced as monomer and polymer forms and immuno-chemically tested. The design was based on worldwide representative reported virus genomes. A bioinformatics scheme by conventional methods and knowledge on MHC-I and II antigen processing mechanisms and HLA haplotype-restriction was performed including sensitive and resistant human populations to virus infection. Covid-19 patients' sera reactivity for synthetic SARS-CoV-2-designed components have proven a high recognition of specific molecules, as well as some evidence for a long-lasting humoral immune response.

10.
Clin Exp Allergy ; 50(7): 835-847, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314444

RESUMO

INTRODUCTION: Allergen-specific immunotherapy (AIT) represents a curative approach for treating allergies. In the tropical and subtropical regions of the world, Blomia tropicalis (Blo t 5 and Blo t 21) is the likely dominant source of indoor allergens. AIM: To generate a hypoallergenic Blo t 5/Blo t 21 hybrid molecule that can treat allergies caused by B tropicalis. METHODS: Using in silico design of B tropicalis hybrid proteins, we chose two hybrid proteins for heterologous expression. Wild-type Blo t 5/Blo t 21 hybrid molecule and a hypoallergenic version, termed BTH1 and BTH2, respectively, were purified by ion exchange and size exclusion chromatography and characterized by physicochemical, as well as in vitro and in vivo immunological, experiments. RESULTS: BTH1, BTH2 and the parental allergens were purified to homogeneity and characterized in detail. BTH2 displayed the lowest IgE reactivity that induced basophil degranulation using sera from allergic rhinitis and asthmatic patients. BTH2 essentially presented the same endolysosomal degradation pattern as the shortened rBlo t 5 and showed a higher resistance towards degradation than the full-length Blo t 5. In vivo immunization of mice with BTH2 led to the production of IgG antibodies that competed with human IgE for allergen binding. Stimulation of splenocytes from BTH2-immunized mice produced higher levels of IL-10 and decreased secretion of IL-4 and IL-5. In addition, BTH2 stimulated T-cell proliferation in PBMCs isolated from allergic patients, with secretion of higher levels of IL-10 and lower levels of IL-5 and IL-13, when compared to parental allergens. CONCLUSIONS AND CLINICAL RELEVANCE: BTH2 is a promising hybrid vaccine candidate for immunotherapy of Blomia allergy. However, further pre-clinical studies addressing its efficacy and safety are needed.


Assuntos
Alérgenos , Proteínas de Artrópodes , Hipersensibilidade , Ácaros , Vacinas , Alérgenos/genética , Alérgenos/imunologia , Alérgenos/farmacologia , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/farmacologia , Citocinas , Feminino , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Masculino , Camundongos Endogâmicos BALB C , Ácaros/genética , Ácaros/imunologia , Vacinas/genética , Vacinas/imunologia , Vacinas/farmacologia
11.
Molecules ; 22(11)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29104210

RESUMO

Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of PfCSP, STARP; MSA1 and Pf155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei-ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.


Assuntos
Antígenos de Protozoários/imunologia , Malária/imunologia , Malária/prevenção & controle , Peptídeos/imunologia , Animais , Epitopos/imunologia , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/imunologia
12.
Front Immunol ; 8: 256, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28337203

RESUMO

Leptospirosis is the most widespread zoonosis in the world and a neglected tropical disease estimated to cause severe infection in more than one million people worldwide every year that can be combated by effective immunization. However, no significant progress has been made on the leptospirosis vaccine since the advent of bacterins over 100 years. Although protective against lethal infection, particularly in animals, bacterin-induced immunity is considered short term, serovar restricted, and the vaccine can cause serious side effects. The urgent need for a new vaccine has motivated several research groups to evaluate the protective immune response induced by recombinant vaccines. Significant protection has been reported with several promising outer membrane proteins, including LipL32 and the leptospiral immunoglobulin-like proteins. However, efficacy was variable and failed to induce a cross-protective response or sterile immunity among vaccinated animals. As hundreds of draft genomes of all known Leptospira species are now available, this should aid novel target discovery through reverse vaccinology (RV) and pangenomic studies. The identification of surface-exposed vaccine candidates that are highly conserved among infectious Leptospira spp. is a requirement for the development of a cross-protective universal vaccine. However, the lack of immune correlates is a major drawback to the application of RV to Leptospira genomes. In addition, as the protective immune response against leptospirosis is not fully understood, the rational use of adjuvants tends to be a process of trial and error. In this perspective, we discuss current advances, the pitfalls, and possible solutions for the development of a universal leptospirosis vaccine.

13.
Hum Vaccin Immunother ; 12(9): 2327-33, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27185081

RESUMO

Dengue is the most important arbovirus disease throughout the world and it is responsible for more than 500,000 dengue hemorrhagic cases and 22,000 deaths every year. One vaccine was recently licensed for human use in Brazil, Mexico and Philippines and although at least seven candidates have been in clinical trials the results of the most developed CYD vaccine have demonstrated immunization problems, such as uneven protection and interference between serotypes. We constructed a vaccine candidate based on vesicular stomatitis virus (VSV) expression of pre-membrane (prM) and envelope (E) proteins of dengue-2 virus (DENV-2) and tested it in mice to evaluate immunogenicity and protection against DENV-2 infection. VSV has been successfully used as vaccine vectors for several viruses to induce strong humoral and cellular immune responses. The VSV-DENV-2 recombinant was constructed by inserting the DENV-2 structural proteins into a VSV plasmid DNA for recombinant VSV-DENV-2 recovery. Infectious recombinant VSV viruses were plaque purified and prM and E expression were confirmed by immunofluorescence and radiolabeling of proteins of infected cells. Forty Balb/C mice were inoculated through subcutaneous (s.c.) route with VSV-DENV-2 vaccine in a two doses schedule 15 d apart and 29 d after first inoculation, sera were collected and the mice were challenged with 50 lethal doses (LD50) of a neurovirulent DENV-2. The VSV-DENV-2 induced anti-DENV-2 antibodies and protected animals in the challenge experiment comparable to DENV-2 immunization control group. We conclude that VSV is a promising platform to test as a DENV vaccine and perhaps against others Flaviviridae.


Assuntos
Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Portadores de Fármacos , Vetores Genéticos , Vesiculovirus/genética , Animais , Anticorpos Antivirais/sangue , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/genética , Vírus da Dengue/genética , Modelos Animais de Doenças , Leucócitos Mononucleares/imunologia , Camundongos Endogâmicos BALB C , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia
14.
Exp. parasitol ; 126(2): 146-155, Apr 22, 2010.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1062770

RESUMO

We here describe the cloning and characterization of the Schistosoma mansoni Annexin 2, previously identifiedin the tegument by proteomic studies, and as an up-regulated gene in schistosomulum stage by microarray data. In silico analysis predicts a conserved core containing four repeat domains of Annexin (ANX) and a variable N-terminal region similar to that described for mammalian isoforms. Real-time RT-PCR and Western blot analysis determined that S. mansoni Annexin 2 is significantly up-regulatedin the transition from free-living cercaria to schistosomulum and adult worm parasitic stages. Immunolocalization experiments and tegument membrane preparations confirmed Annexin 2 as a protein mainlylocalized in the tegument of schistosomula and adult worms. Furthermore, it binds to the tegument surface membranes in a calcium-dependent manner. These results suggest that S. mansoni Annexin 2 is closely associated to the tegument arrangement, being a potential target for immune intervention.


Assuntos
Humanos , Schistosoma mansoni/imunologia , Vacinas , Anexinas , Imunofluorescência/métodos , Microscopia Confocal/métodos , Tegumento Comum
15.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;43(2): 217-224, Feb. 2010. ilus, graf
Artigo em Inglês | LILACS | ID: lil-538233

RESUMO

Bovine herpesvirus type 5 (BoHV-5) is an important pathogen of cattle in South America. We describe here the construction and characterization of deletion mutants defective in the glycoprotein E (gE) or thymidine kinase (TK) gene or both (gE/TK) from a highly neurovirulent and well-characterized Brazilian BoHV-5 strain (SV507/99). A gE-deleted recombinant virus (BoHV-5 gE∆) was first generated in which the entire gE open reading frame was replaced with a chimeric green fluorescent protein gene. A TK-deleted recombinant virus (BoHV-5 TK∆) was then generated in which most of the TK open reading frame sequences were deleted and replaced with a chimeric â-galactosidase gene. Subsequently, using the BoHV-5 gE∆ virus as backbone, a double gene-deleted (TK plus gE) BoHV-5 recombinant (BoHV-5 gE/TK∆) was generated. The deletion of the gE and TK genes was confirmed by immunoblotting and PCR, respectively. In Madin Darby bovine kidney (MDBK) cells, the mutants lacking gE (BoHV-5 gE∆) and TK + gE (BoHV-5 gE/TK∆) produced small plaques while the TK-deleted BoHV-5 produced wild-type-sized plaques. The growth kinetics and virus yields in MDBK cells for all three recombinants (BoHV-5 gE∆, BoHV-5 TK∆ and BoHV-5 gE/TK∆) were similar to those of the parental virus. It is our belief that the dual gene-deleted recombinant (BoHV-5 gE/TK∆) produced on the background of a highly neurovirulent Brazilian BoHV-5 strain may have potential application in a vaccine against BoHV-5.


Assuntos
Animais , Bovinos , Deleção de Genes , /genética , Timidina Quinase/genética , Proteínas do Envelope Viral/genética , Vírus Defeituosos/genética , Eletroforese em Gel de Poliacrilamida , Proteínas de Fluorescência Verde/genética , /imunologia , /patogenicidade , Immunoblotting , Reação em Cadeia da Polimerase , Recombinação Genética/genética , Timidina Quinase/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Virulência/genética
16.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;43(2): 150-159, Feb. 2010. tab, ilus
Artigo em Inglês | LILACS | ID: lil-538237

RESUMO

Bovine herpesvirus 5 (BoHV-5), the agent of herpetic meningoencephalitis in cattle, is an important pathogen of cattle in South America and several efforts have been made to produce safer and more effective vaccines. In the present study, we investigated in rabbits the virulence of three recombinant viruses constructed from a neurovirulent Brazilian BoHV-5 strain (SV507/99). The recombinants are defective in glycoprotein E (BoHV-5gEÄ), thymidine kinase (BoHV-5TKÄ) and both proteins (BoHV-5gEÄTKÄ). Rabbits inoculated with the parental virus (N = 8) developed neurological disease and died or were euthanized in extremis between days 7 and 13 post-infection (pi). Infectivity was detected in several areas of their brains. Three of 8 rabbits inoculated with the recombinant BoHV-5gEÄ developed neurological signs between days 10 and 15 pi and were also euthanized. A more restricted virus distribution was detected in the brain of these animals. Rabbits inoculated with the recombinants BoHV-5TKÄ (N = 8) or BoHV-5gEÄTKÄ (N = 8) remained healthy throughout the experiment in spite of variable levels of virus replication in the nose. Dexamethasone (Dx) administration to rabbits inoculated with the three recombinants at day 42 pi did not result in viral reactivation, as demonstrated by absence of virus shedding and/or increase in virus neutralizing titers. Nevertheless, viral DNA was detected in the trigeminal ganglia or olfactory bulbs of all animals at day 28 post-Dx, demonstrating they were latently infected. These results show that recombinants BoHV-5TKÄ and BoHV-5gEÄTKÄ are attenuated for rabbits and constitute potential vaccine candidates upon the confirmation of this phenotype in cattle.


Assuntos
Animais , Coelhos , Infecções por Herpesviridae/virologia , /patogenicidade , Vacinas contra Herpesvirus/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas Virais/imunologia , Encéfalo/virologia , DNA Viral/análise , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , /genética , /imunologia , Mutação , Timidina Quinase/genética , Replicação Viral , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Virulência/genética , Ativação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA