Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.263
Filtrar
1.
J Environ Sci (China) ; 149: 113-125, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181627

RESUMO

To study the volatile organic compounds (VOCs) emission characteristics of industrial enterprises in China, 6 typical chemical industries in Yuncheng City were selected as research objects, including the modern coal chemical industry (MCC), pharmaceutical industry (PM), pesticide industry (PE), coking industry (CO) and organic chemical industry (OC). The chemical composition of 91 VOCs was quantitatively analyzed. The results showed that the emission concentration of VOCs in the chemical industry ranged from 1.16 to 155.59 mg/m3. Alkanes were the main emission components of MCC (62.0%), PE (55.1%), and OC (58.5%). Alkenes (46.5%) were important components of PM, followed by alkanes (23.8%) and oxygenated volatile organic compounds (OVOCs) (21.2%). Halocarbons (8.6%-71.1%), OVOCs (9.7%-37.6%) and alkanes (11.2%-27.0%) were characteristic components of CO. The largest contributor to OFP was alkenes (0.6%-81.7%), followed by alkanes (9.3%-45.9%), and the lowest one was alkyne (0%-0.5%). Aromatics (66.9%-85.4%) were the largest contributing components to SOA generation, followed by alkanes (2.6%-28.5%), and the lowest one was alkenes (0%-4.1%). Ethylene and BTEX were the key active species in various chemical industries. The human health risk assessment showed workers long-term exposed to the air in the chemical industrial zone had a high cancer and non-cancer risk during work, and BTEX and dichloromethane were the largest contributors.


Assuntos
Poluentes Atmosféricos , Indústria Química , Monitoramento Ambiental , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , China , Medição de Risco , Poluentes Atmosféricos/análise , Humanos
2.
J Environ Sci (China) ; 149: 164-176, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181631

RESUMO

Cerium and cobalt loaded Co-Ce/TiO2 catalyst prepared by impregnation method was investigated for photothermal catalytic toluene oxidation. Based on catalyst characterizations (XPS, EPR and H2-TPR), redox cycle between Co and TiO2 (Co2+ + Ti4+ ↔ Co3+ + Ti3+) results in the formation of Co3+, Ti3+ and oxygen vacancies, which play important roles in toluene catalytic oxidation reaction. The introduction of Ce brings in the dual redox cycles (Co2+ + Ti4+ ↔ Co3+ + Ti3+, Co2+ + Ce4+ ↔ Co3+ + Ce3+), further promoting the elevation of reaction sites amount. Under full spectrum irradiation with light intensity of 580 mW/cm2, Co-Ce/TiO2 catalyst achieved 96% of toluene conversion and 73% of CO2 yield, obviously higher than Co/P25 and Co/TiO2. Co-Ce/TiO2 efficiently maintains 10-hour stability test under water vapor conditions and exhibits better photothermal catalytic performance than counterparts under different wavelengths illumination. Photothermal catalytic reaction displays improved activities compared with thermal catalysis, which is attributed to the promotional effect of light including photocatalysis and light activation of reactive oxygen species.


Assuntos
Cério , Cobalto , Oxirredução , Titânio , Tolueno , Titânio/química , Cobalto/química , Catálise , Tolueno/química , Cério/química , Modelos Químicos , Processos Fotoquímicos
3.
J Environ Sci (China) ; 149: 406-418, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181653

RESUMO

Improving the accuracy of anthropogenic volatile organic compounds (VOCs) emission inventory is crucial for reducing atmospheric pollution and formulating control policy of air pollution. In this study, an anthropogenic speciated VOCs emission inventory was established for Central China represented by Henan Province at a 3 km × 3 km spatial resolution based on the emission factor method. The 2019 VOCs emission in Henan Province was 1003.5 Gg, while industrial process source (33.7%) was the highest emission source, Zhengzhou (17.9%) was the city with highest emission and April and August were the months with the more emissions. High VOCs emission regions were concentrated in downtown areas and industrial parks. Alkanes and aromatic hydrocarbons were the main VOCs contribution groups. The species composition, source contribution and spatial distribution were verified and evaluated through tracer ratio method (TR), Positive Matrix Factorization Model (PMF) and remote sensing inversion (RSI). Results show that both the emission results by emission inventory (EI) (15.7 Gg) and by TR method (13.6 Gg) and source contribution by EI and PMF are familiar. The spatial distribution of HCHO primary emission based on RSI is basically consistent with that of HCHO emission based on EI with a R-value of 0.73. The verification results show that the VOCs emission inventory and speciated emission inventory established in this study are relatively reliable.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , China , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/análise
4.
J Environ Sci (China) ; 148: 79-87, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095203

RESUMO

Furniture is identified as a vital volatile organic compound (VOC) emission source in the indoor environment. Leather has become the most common raw and auxiliary fabric material for upholstered furniture, particularly with extensive consumption in sofas, due to its abundant resources and efficient functions. Despite being widely traded across the world, little research has been conducted on the VOCs released by leather materials and their health risk assessment in the indoor environment. Accordingly, this study investigated the VOC emissions of leather with different grades and the health risk of the inhalation exposure. Based on the ultra-fast gas phase electronic nose (EN) and GC-FID/Qtof, the substantial emissions of aliphatic aldehyde ketones (Aks), particularly hexanal, appear to be the cause of off-flavor in medium and low grade (MG and LG) sofa leathers. The health risk assessment indicated that leather materials barely pose non-carcinogenic and carcinogenic effects to residents. Given the abundance of VOC sources and the accumulation of health risks in the indoor environment, more stringent specifications concerning qualitative and quantitative content should be extended to provide VOC treatment basic for the manufacturing industry and obtain better indoor air quality.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Medição de Risco , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Humanos , Decoração de Interiores e Mobiliário , Exposição por Inalação/análise , Exposição por Inalação/estatística & dados numéricos , Têxteis/análise
5.
J Environ Sci (China) ; 148: 336-349, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095169

RESUMO

Catalytic destruction is an ascendant technology for the abatement of volatile organic compounds (VOCs) originating from solvent-based industrial processes. The varied composition tends to influence each VOC's catalytic behavior in the reaction mixture. We investigated the catalytic destruction of multi-component VOCs including dichloromethane (DCM) and ethyl acetate (EA), as representatives from pharmaceutical waste gases, over co-supported HxPO4-RuOx/CeO2 catalyst. A mutual inhibitory effect relating to concentrations because of competitive adsorption was verified in the binary VOCs oxidation and EA posed a more negative effect on DCM oxidation owing to EA's superior adsorption capacity. Preferential adsorption of EA on acidic sites (HxPO4/CeO2) promoted DCM activation on basic sites (O2-) and the dominating EA oxidation blocked DCM's access to oxidation centers (RuOx/CeO2), resulting in boosted monochloromethane yield and increased chlorine deposition for DCM oxidation. The impaired redox ability of Ru species owing to chlorine deposition in turn jeopardized deep oxidation of EA and its by-products, leading to increased gaseous by-products such as acetic acid originating from EA pyrolysis. Notably, DCM at low concentration slightly promoted EA conversion at low temperatures with or without water, consistent with the enhanced EA adsorption in co-adsorption analyses. This was mainly due to that DCM impeded the shielding effect of hydrolysate deposition from rapid EA hydrolysis depending on the decreased acidity. Moreover, water benefited EA hydrolysis but decreased CO2 selectivity while the generated water derived from EA was likely to affect DCM transformation. This work may provide theoretical guidance for the promotion of applied catalysts toward industrial applications.


Assuntos
Acetatos , Cério , Cloreto de Metileno , Acetatos/química , Catálise , Cloreto de Metileno/química , Cério/química , Compostos Orgânicos Voláteis/química , Adsorção , Oxirredução , Rutênio/química
6.
J Environ Sci (China) ; 150: 230-245, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306398

RESUMO

Benzene, toluene, ethylbenzene, and xylene (BTEX) pollution poses a serious threat to public health and the environment because of its respiratory and neurological effects, carcinogenic properties, and adverse effects on air quality. BTEX exposure is a matter of grave concern in India owing to the growing vehicular and development activities, necessitating the assessment of atmospheric concentrations and their spatial variation. This paper presents a comprehensive assessment of ambient concentrations and spatiotemporal variations of BTEX in India. The study investigates the correlation of BTEX with other criteria pollutants and meteorological parameters, aiming to identify interrelationships and diagnostic indicators for the source characterization of BTEX emissions. Additionally, the paper categorizes various regions in India according to the Air Quality Index (AQI) based on BTEX pollution levels. The results reveal that the northern zone of India exhibits the highest levels of BTEX pollution compared to central, eastern, and western regions. In contrast, the southern zone experiences the least pollution with BTEX. Seasonal analysis indicates that winter and post-monsoon periods, characterized by lower temperatures, are associated with higher BTEX levels due to the accumulation of localized emissions. When comparing the different zones in India, high traffic emissions and localized activities, such as solvent use and solvent evaporation, are found to be the primary sources of BTEX. The findings of the current study aid in source characterization and identification, and better understanding of the region's air quality problems, which helps in the development of focused BTEX pollution reduction and control strategies.


Assuntos
Poluentes Atmosféricos , Derivados de Benzeno , Benzeno , Monitoramento Ambiental , Tolueno , Xilenos , Índia , Poluentes Atmosféricos/análise , Xilenos/análise , Derivados de Benzeno/análise , Tolueno/análise , Benzeno/análise , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/análise , Estações do Ano , Atmosfera/química
7.
Chem Asian J ; : e202400956, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353036

RESUMO

In this study, we investigate the adsorption  of MoSi2N4) and MoSi2N4-VN towards five potential lung cancer volatile organic compounds (VOCs). Density functional theory calculations reveal that MoSi2N4 weakly adsorb the mentioned VOCs, whereas introduction of nitrogen vacancies significantly enhances the adsorption energies ([[EQUATION]]), both in gas phase and aqueous medium. The MoSi2N4-VN monolayers exhibit a reduced bandgap and facilitate charge transfer upon VOCs adsorption, resulting in enhanced [[EQUATION]] values of -0.83, -0.76, -0.49, -0.61, and -0.50 eV for 2,3,4-trimethyl hexane, 4-methyl octane, o-toluidine, Aniline, and Ethylbenzene, respectively. Bader charge analysis and spin-polarized density of states (SPDOS) elucidate the charge redistribution and hybridization between MoSi2N4-VN and the adsorbed VOCs. The work function of MoSi2N4-VN is significantly reduced upon VOCs adsorption due to induced dipole moments, enabling smooth charge transfer and selective VOCs sensing. Notably, MoSi2N4-VN monolayers exhibit sensor responses ranging from 16.2% to 26.6% towards the VOCs, with discernible selectivity. Importantly, the recovery times of the VOCs desorption is minimal, reinforcing the suitability of MoSi2N4-VN as a rapid, and reusable biosensor platform for efficient detection of lung cancer biomarkers. Thermodynamic analysis based on Langmuir adsorption model shows improved adsorption and detection capabilities MoSi2N4-VN under diverse operating conditions of temperatures and pressures.

8.
Sci Rep ; 14(1): 22792, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354104

RESUMO

Perennial grains, which remain productive for multiple years, rather than growing for only one season before harvest, have deep, dense root systems that can support a richness of beneficial microorganisms, which are mostly underexplored. In this work we isolated forty-three bacterial strains associated with the rhizosphere of the OK72 perennial wheat line, developed from a cross between winter common wheat and Thinopyrum ponticum. Identified using 16S rDNA sequencing, these bacteria were assessed for plant growth-promoting traits such as indole-3-acetic acid, siderophores and ACC-deaminase acid production, biofilm formation, and the ability to solubilize phosphate and proteins. Twenty-five strains exhibiting in vitro significant plant growth promoting traits, belong to wheat keystone genera Pseudomonas, Microbacterium, Variovorax, Pedobacter, Dyadobacter, Plantibacter, and Flavobacterium. Seven strains, including Aeromicrobium and Okibacterium genera, were able to promote root growth in a commercial annual wheat cultivar while strains from Pseudomonas genus inhibited the growth of Aspergillus flavus and Fusarium species, using direct antagonism assays. The same strains produced a high amount of 1-undecanol a volatile organic compound, which may aid in suppressing fungal growth. The study highlights the potential of these bacteria to form new commercial consortia, enhancing the health and productivity of annual wheat crops within sustainable agricultural practices.


Assuntos
Raízes de Plantas , Rizosfera , Microbiologia do Solo , Triticum , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Bactérias/genética , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal , Sideróforos/metabolismo , RNA Ribossômico 16S/genética , Fusarium
9.
Diagn Microbiol Infect Dis ; 110(4): 116533, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39270517

RESUMO

Systemic bacterial infections represent a significant clinical challenge due to the increasing resistance rate towards antimicrobials. An essential key to controlling antimicrobial resistance spread is to administer targeted therapy after a precise minimum inhibitory concentration reporting. Among the available fast technologies for antimicrobial susceptibility testing (AST), the VITEKⓇ REVEAL™ (Biomerieux, Florence, Italy) proposes volatile organic compounds (VOC) colourimetric arrays to discriminate between susceptible and resistant Gram-negative isolates directly from positive blood cultures. We evaluated this methodology during a four-month laboratory experience on 40 positive blood culture samples, reporting a comparison to standard culture-based methods. The protocol revealed an essential agreement of 100 % between the conventional and the experimental procedures, while the categorical agreement resulted in 97.5 % due to one very major error (VME) for meropenem/vaborbactam in K. pneumoniae. Although further studies will be necessary to investigate its performance on rare microorganisms, the VITEKⓇ REVEAL™ demonstrated an optimal sensitivity in defining MIC values for multi-drug resistant (MDR) microorganisms. These results encourage the application of the method in all high-risk epidemiological areas, confirming the effectiveness of VOC detection in monitoring bacterial susceptibility profiles.

10.
J Sci Food Agric ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271473

RESUMO

BACKGROUND: To date, cider production has primarily relied on Saccharomyces cerevisiae. Introducing novel non-Saccharomyces yeasts can enhance the diversity of cider properties. Among these, the Metschnikowia genus stands out for its ability to produce hydrolytic enzymes that may impact the sensorial and technological properties of cider. This study focused on evaluating the impact of three Metschnikowia species - Metschnikowia koreensis (Mk), M. reukaufii (Mr), and M. pulcherrima (Mp) - which exhibit acid protease and esterase activity, on the quality enhancement of cider. RESULTS: The research findings indicate that the overall quality of cider produced through co-fermentation with these species surpassed that of cider fermented with mono-fermentation of S. cerevisiae (Sc). The cider fermented with the Sc + Mk combination exhibited the lowest levels of harsh-tasting malic acid and higher levels of softer lactic acid. Sensory array analysis also demonstrated that the Sc + Mk fermented cider exhibited high sensor response values for compounds contributing to a complex overall olfactory composition and richness. Furthermore, the Sc + Mk fermented cider exhibited the highest total quantity and variety of volatile organic compounds (VOCs). Specifically, the concentrations of phenethyl alcohol, 3-methyl-1-butanol, ethyl octanoate, and decanoic acid were notably elevated in comparison with other groups. CONCLUSION: This study illustrates that Metschnikowia species, particularly M. koreensis, show significant potential as starters for cider due to their various technological properties, including acidity modulation, aroma enhancement, and color improvement. The findings of this study provide a foundation for improving cider quality by co-fermenting S. cerevisiae with innovative starter cultures. © 2024 Society of Chemical Industry.

11.
Metabolomics ; 20(5): 102, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242444

RESUMO

INTRODUCTION: Volatile organic compounds (VOCs) can arise from underlying metabolism and are detectable in exhaled breath, therefore offer a promising route to non-invasive diagnostics. Robust, precise, and repeatable breath measurement platforms able to identify VOCs in breath distinguishable from background contaminants are needed for the confident discovery of breath-based biomarkers. OBJECTIVES: To build a reliable breath collection and analysis method that can produce a comprehensive list of known VOCs in the breath of a heterogeneous human population. METHODS: The analysis cohort consisted of 90 pairs of breath and background samples collected from a heterogenous population. Owlstone Medical's Breath Biopsy® OMNI® platform, consisting of sample collection, TD-GC-MS analysis and feature extraction was utilized. VOCs were determined to be "on-breath" if they met at least one of three pre-defined metrics compared to paired background samples. On-breath VOCs were identified via comparison against purified chemical standards, using retention indexing and high-resolution accurate mass spectral matching. RESULTS: 1471 VOCs were present in > 80% of samples (breath and background), and 585 were on-breath by at least one metric. Of these, 148 have been identified covering a broad range of chemical classes. CONCLUSIONS: A robust breath collection and relative-quantitative analysis method has been developed, producing a list of 148 on-breath VOCs, identified using purified chemical standards in a heterogenous population. Providing confirmed VOC identities that are genuinely breath-borne will facilitate future biomarker discovery and subsequent biomarker validation in clinical studies. Additionally, this list of VOCs can be used to facilitate cross-study data comparisons for improved standardization.


Assuntos
Testes Respiratórios , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Testes Respiratórios/métodos , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Biomarcadores/análise , Idoso , Adulto Jovem , Expiração
12.
Artigo em Inglês | MEDLINE | ID: mdl-39312116

RESUMO

This work presents a year-long integral study of air quality parameters in Ciudad Real, a small city in the center of Spain, and its influence on the nearby national park, Las Tablas de Daimiel. The study covers meteorological parameters and criteria pollutants such as O3, NO, NO2, SO2, and PM10. Additionally, for each month, a 1-week campaign was performed sampling air in sorbent tubes with 8-h time resolution to analyze anthropogenic volatile organic compounds and the effects of seasons, daytime, and working-weekend days. During these campaigns, 24-h PM2.5 samples were also collected to measure the load of bacteria and fungi, as well as the trace concentrations of elements.The city and the national park NOx profiles showed that emissions from the town had a non-perceivable effect on the protected area. PM10 levels in Ciudad Real were influenced by Saharan intrusions, as was the national park; however, Ciudad Real had a higher contribution from anthropogenic sources. Ozone levels were lower in the city during the cold season due to the higher concentration of NOx and have not changed significantly in the last decade.The VOCs with higher average concentrations were toluene, m,p-xylene, benzene, methylene chloride, and o-xylene, with traffic being the main source of these pollutants in the city. For benzene and carbon tetrachloride levels, weak carcinogenic risks were estimated. In PM2.5, the most abundant metals were Na, Zn, Mg, Ca, Al, Fe, and K. The carcinogenic and non-carcinogenic risks estimated from the levels of the studied metals were negligible. Bacterial and fungal counts positively correlated with the concentration of PM2.5. Microbial community composition showed seasonal variability, with the dominance of human pathogenic bacteria which correlated with certain pollutants such as SO2. Bacillus and Cutibacterium were the most abundant genera.

13.
Sci Total Environ ; 954: 176447, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39307370

RESUMO

Formaldehyde (HCHO), glyoxal (CHOCHO), and nitrogen dioxide (NO2) are crucial in atmospheric photochemical processes at both surface and elevated altitudes. This study presents synchronous multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of the vertical distributions of summertime HCHO, CHOCHO and NO2 in four representative megacities within the Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Sichuan Basin (SB), and Pearl River Delta (PRD) regions of China. The vertical distributions of HCHO and CHOCHO tended to occur at higher altitudes compared to NO2, influenced by both primary emissions near the ground and photochemical oxidation processes at elevated altitudes. Source separation regression analysis using the CO-CHOCHO trace pair identified secondary formation as the predominant source of ambient HCHO. In urban areas, the ratio of CHOCHO to secondary HCHO (RGFsec) serves as a more reliable metric at ground level for diagnosing VOC precursor sources, excluding the interference of primary and background HCHO. The increase in RGF values at higher altitudes highlights the relative contribution of VOCs favoring CHOCHO production. Moreover, four indicators (e.g. FNR, FNRsec, GNR, and MNR) were utilized to characterize O3 formation sensitivity at different altitudes. The range of FNR, FNRsec, GNR, and MNR marking the O3 formation sensitivity regime varies regionally, highlighting the need for localized assessments. The VOC-limited regime dominated at the ground level, whereas the contribution of the NOx-limited regime increased with altitude. Therefore, a comprehensive control strategy addressing both VOC and NOx emissions across different altitudes is essential for effectively mitigating photochemical pollution in urban areas of China.

14.
Microbes Infect ; : 105423, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299570

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) studies usually rely on cross-sectional data of large cohorts but limited repeated samples, overlooking significant inter-individual antibody kinetic differences. By combining Luminex, activation-induced marker (AIM) and IFN-γ/IL-2 Fluorospot assays, we characterized the IgM, IgA, and IgG antibody kinetics using 610 samples from 31 healthy adults over two years after COVID-19 vaccination, and the T-cell responses six months post-booster. Antibody trajectories varied among isotypes: IgG decayed slowly, IgA exhibited an initial sharp decline, which gradually slowed down and stabilized above the seropositivity threshold. Contrarily, IgM rapidly dropped to undetectable levels after primary vaccination. Importantly, three vaccine doses induced higher and more durable anti-spike IgG and IgA levels compared to two doses, whereas infection led to the highest antibody peak and slowest antibody decay rate compared to vaccination. Comparing with ancestral virus, antibody levels recognizing Omicron subvariants had a faster antibody decay. Finally, polyfunctional T cells were positively associated with subsequent IgA responses. These results revealed distinctive antibody patterns by isotype and highlight the benefits of booster doses in enhancing and sustaining antibody responses.

15.
Pestic Biochem Physiol ; 204: 106079, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277392

RESUMO

Root-knot nematodes (Meloidogyne spp.) are highly destructive pests that cause significant yield losses annually. Biological control of nematodes has emerged as a potential alternative in sustainable agriculture. In this study, we originally isolated Bacillus cereus G5 from the rhizosphere soil of rice (Oryza sativa). Treatment with the fermentation supernatant of G5 in vitro demonstrated high toxicity to second-stage juveniles (J2) of Meloidogyne graminicola and remarkably inhibited egg hatching. Moreover, G5 steadily colonized rhizosphere soil and rice seedlings, and exhibited excellent biocontrol efficacy against M. graminicola under greenhouse conditions. Notably, the volatile organic compounds (VOCs) produced by G5 displayed high fumigant activity against M. graminicola. The G5 VOCs efficiently reduced the gall index and nematode population in rice roots, while also promoting rice growth in double-layered pot tests. Additionally, the expression of defense genes involved in the salicylic acid (OsNPR1, OsWRKY45, OsPAL1), jasmonic acid (OsJaMYB, OsAOS2) and ethylene (OsACS1) signalling pathways was significantly upregulated in rice seedlings treated with G5 VOCs. This suggests that G5 VOCs contribute to eliciting plant defense responses. Furthermore, we identified 14 major VOCs produced by G5 using solid-phase micro-extraction gas chromatography and mass spectrometry (SPEM-GC-MS). Notably, allomatrine, morantel, 1-octen-3-ol and 3-methyl-2-butanol displayed strong contact nematicidal activity. Among these, only 1-octen-3-ol demonstrated fumigant activity against J2s of M. graminicola, with an LC50 value of 758.95 mg/L at 24 h. Overall, these results indicated that the B. cereus G5 and its synthetic VOCs possess high potential as biocontrol agents for managing root-knot nematodes.


Assuntos
Bacillus cereus , Oryza , Tylenchoidea , Compostos Orgânicos Voláteis , Animais , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/fisiologia , Bacillus cereus/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Oryza/parasitologia , Oryza/microbiologia , Controle Biológico de Vetores/métodos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Raízes de Plantas/parasitologia , Rizosfera , Agentes de Controle Biológico/farmacologia
16.
J Chromatogr A ; 1735: 465327, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39232417

RESUMO

Because of their major role in indoor and outdoor air pollution, even at trace levels, VOCs are of great interest, and their monitoring requires sensitive analytical instruments. Several techniques are commonly used, such as portable sensors, Proton Transfer Reaction Mass Spectrometry (PTR-MS) and Thermal Desorption Gas Chromatography (TD-GC). The latter is widely used off- and on-line with Flame Ionization Detectors (FID) or Mass Spectrometers (MS). Given the large number of molecules detected per chromatogram, the data generated by these monitoring techniques are usually checked and reprocessed manually. This process is extremely time consuming and could result in human error. The challenge is to provide reliable results as quickly as possible. In this study, the performances of an on-line TD-GC system with dual detection FID and MS were tested. The Method Detection Limits (MDL), linearities and accuracies of 60 VOCs (alkanes, aromatics, oxygenated and halogenated) were calculated both for FID and MS detectors. The MDLs and accuracies ranged from 0.006 to 0.618 ppbv and from 77 % to 100 % for FID, and from 0.018 to 0.760 ppbv and from 80 % to 100 % for MS. Both detectors showed good complementarity and allowed the development of two programs to facilitate data analysis. These algorithms were designed to autonomously select optimal results between FID and MS detectors, and were evaluated for outdoor and indoor measurement conditions. Measuring VOCs in field campaigns is challenging, and it is anticipated that these programs could be extended to other types of dual-detector systems or for the comparison of data from different calibrated instruments.


Assuntos
Limite de Detecção , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa/métodos , Reprodutibilidade dos Testes , Cromatografia Gasosa-Espectrometria de Massas/métodos , Poluentes Atmosféricos/análise
17.
Sci Total Environ ; 952: 175932, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39218091

RESUMO

Organic aerosols (OA) are a significant component of fine particulate matter in the ambient air and are formed through primary and secondary processes. Primary organic aerosols (POA) are directly released from sources, while secondary organic aerosols (SOA) are formed through the oligomerization and/or oxidation of volatile organic compounds (VOCs) in the atmosphere. Recently, there has an increasing attention on the SOA budgets, their formation pathways, and photochemical evolution due to their impacts on climate and human health. Biomass burning (BB) is a significant source of OA, contributing around 5-30 % to the SOA burden globally. Agricultural residue burning (ARB) is a type of BB that contributes ∼10 % of total atmospheric OA mass worldwide, whereas it contributes higher in Asian regions like China and India. ARB emits a significant amount of air pollutants, including VOCs, into the atmosphere. However, there is inadequate information on the transformation of ARB emissions to SOA due to limited laboratory studies. The present review focuses on the formation mechanism of SOA from ARB emissions, summarizing the current state of the art about ARB precursors and their oxidation products from chamber-based studies, including measurement methods and analytical instrumentation. The review also discusses the role of different types of oxidants in OA mass enhancement, factors affecting the overall SOA yield, and the uncertainties involved in the process.

18.
Heliyon ; 10(17): e36738, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39319131

RESUMO

China is one of the largest volatile organic compounds (VOCs) emitters worldwide. The emission levels of and harm caused by VOCs have attracted much attention. China has implemented multiple policies for VOCs prevention and control but lacks economic control measures for VOCs In this study, the input-output (IO) price model was used to simulate and analyze the emission reduction and economic effects resulting from the imposition of a VOCs environmental protection tax (EPT) in 31 provinces in China. The results show that, first, the collection of a VOCs-EPT can achieve not only VOCs emission reductions but also the synergistic emission reductions of other major pollutants. Second, the collection of a VOCs-EPT could have a negative impact on the macroeconomy, i.e., the greater the tax scope and the higher the tax rate are, the greater the negative economic impact. Third, differences in the level of economic development, the structure of pollution emissions and the stringency of tax policies among regions would cause the emission reduction effect and related negative economic impact to vary across regions. Finally, the collection of a VOCs-EPT could have heterogeneous impacts on various industries, as high-emission industries would suffer greater negative impacts. Therefore, each region should set tax rates that match its provincial economic and environmental development levels. Furthermore, a VOCs-EPT can be levied on key industries, and reasonable preferential tax policies can be formulated to reduce negative macroeconomic benefits.

19.
PeerJ ; 12: e17769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39329142

RESUMO

Leaf litter decomposition, a crucial component of the global carbon cycle, relies on the pivotal role played by microorganisms. However, despite their ecological importance, leaf-litter-decomposing microorganism taxonomic and functional diversity needs additional study. This study explores the taxonomic composition, dynamics, and functional role of microbial communities that decompose leaf litter of forest-forming tree species in two ecologically unique regions of Europe. Twenty-nine microbial metagenomes isolated from the leaf litter of eight forest-forming species of woody plants were investigated by Illumina technology using read- and assembly-based approaches of sequences analysis. The taxonomic structure of the microbial community varies depending on the stage of litter decomposition; however, the community's core is formed by Pseudomonas, Sphingomonas, Stenotrophomonas, and Pedobacter genera of Bacteria and by Aureobasidium, Penicillium, Venturia genera of Fungi. A comparative analysis of the taxonomic structure and composition of the microbial communities revealed that in both regions, seasonal changes in structure take place; however, there is no clear pattern in its dynamics. Functional gene analysis of MAGs revealed numerous metabolic profiles associated with leaf litter degradation. This highlights the diverse metabolic capabilities of microbial communities and their implications for ecosystem processes, including the production of volatile organic compounds (VOCs) during organic matter decomposition. This study provides important advances in understanding of ecosystem processes and the carbon cycle, underscoring the need to unravel the intricacies of microbial communities within these contexts.


Assuntos
Florestas , Microbiota , Folhas de Planta , Estações do Ano , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Microbiota/genética , Microbiota/fisiologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Fungos/genética , Fungos/classificação , Fungos/metabolismo , Fungos/isolamento & purificação , Sequenciamento Completo do Genoma , Metagenoma/genética , Árvores/microbiologia
20.
Planta ; 260(4): 95, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271529

RESUMO

MAIN CONCLUSION: New findings are presented for Chaerophyllum coloratum L. on the volatile composition of the essential oil, based on data of hydrosol and fresh plant material, light and electron microscopy of leaves, and cytotoxic and antiviral activity. The widespread Apiaceae family includes many well-known and economically important plants that are cultivated as food or spices. Many produce essential oils and are generally a source of secondary metabolites and compounds that have numerous applications in daily life. In this study, the chemical composition of volatile organic compounds (VOCs), ultrastructure and biological activity of the Mediterranean endemic species Cheaerophyllum coloratum L. are investigated, as literature data for this plant species are generally very scarce. The essential oil and hydrosol were extracted from the air-dried leaves by hydrodistillation and the chemical composition of both extracts was analysed by GC-MS in conjunction with headspace solid-phase microextraction (HS-SPME) of VOCs from the hydrosol and the fresh plant material. In the composition of the essential oil, the oxygenated sesquiterpenes spathulenol and caryophyllene oxide were the most abundant components. In the fresh plant material, non-oxygenated sesquiterpenes dominated, with ß-caryophyllene and germacrene D being the main components. The hydrosol was dominated by monoterpenes, with the oxygenated monoterpene p-cymen-8-ol being the most abundant. Light and electron micrographs of the leaf of C. coloratum show secretory structures, and we hypothesize that glandular leaf trichomes, secretory epidermal cells and secretory canals are involved in the production of volatiles and their secretion on the leaf surface. Since the biological potential of C. coloratum is poorly investigated, we tested its cytotoxic activity on cancer and healthy cell lines and its antiviral activity on plants infected with tobacco mosiac virus (TMV). Our results dealing with the composition, ultrastructure and biological activity show that C. coloratum represent a hidden valuable plant species with a potential for future research.


Assuntos
Óleos Voláteis , Folhas de Planta , Compostos Orgânicos Voláteis , Folhas de Planta/química , Folhas de Planta/ultraestrutura , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Antivirais/farmacologia , Microextração em Fase Sólida , Sesquiterpenos/farmacologia , Sesquiterpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA