Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.408
Filtrar
1.
Front Mol Neurosci ; 17: 1473058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359687

RESUMO

Canopy Homolog 2 (CNPY2) is an endoplasmic reticulum (ER) localized protein belonging to the CNPY gene family. We show here that CNPY2 is protective against ER stress induced by tunicamycin in neuronal cells. Overexpression of CNPY2 enhanced, while downregulation of CNPY2 using shRNA expression, reduced the viability of neuroblastoma cells after tunicamycin. Likewise, recombinant CNPY2 increased survival of cortical neurons in culture after ER stress. CNPY2 reduced the activating transcription factor 6 (ATF6) branch of ER stress and decreased the expression of CCAT/Enhancer-Binding Protein Homologous Protein (CHOP) involved in cell death. Immunostaining using mouse brain sections revealed that CNPY2 is expressed by cortical and striatal neurons and is co-expressed with the transcription factor, COUPTF-interacting protein 2 (CTIP2). In transgenic N171-82Q mice, as a model for Huntington's disease (HD), the number of CNPY2-immunopositive neurons was increased in the cortex together with CTIP2. In the striatum, however, the number of CNPY2 decreased at 19 weeks of age, representing a late-stage of pathology. Striatal cells in culture were shown to be more susceptible to ER stress after downregulation of CNPY2. These results demonstrate that CNPY2 is expressed by corticostriatal neurons involved in the regulation of movement. CNPY2 enhances neuronal survival by reducing ER stress and is a promising factor to consider in HD and possibly in other brain diseases.

2.
Biochim Biophys Acta Mol Cell Res ; : 119854, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39353469

RESUMO

Anterior gradient 2 (AGR2) is often overexpressed in many human cancers, including pancreatic ductal adenocarcinoma (PDAC). Elevated AGR2 expression is known to play a critical role in tumor development, progression, and metastasis and positively correlates with poor patient survival. However, the relationship between AGR2 expression and tumor growth is not fully understood. Our study aims to investigate the impact of AGR2 knockdown on the survival of two pancreatic cancer cell lines, HPAF-II and PANC-1, that exhibit high AGR2 expression. This study revealed that the knockdown of AGR2 expression through an inducible shRNA-mediated approach reduced the proliferative ability and colony-forming potential of PDAC cells compared to scramble controls. Significantly, knocking down AGR2 led to the inhibition of multiple protein biosynthesis pathways and induced ER stress through unfolded protein response (UPR) activation. AGR2 knockdown induced ER stress and increased mitochondrial fission, while mitochondrial fusion remained unaffected. Ultimately, apoptotic cell death was heightened in AGR2 knockdown PDAC cells compared to the controls. Overall, these data reveal a new axis involving AGR2-ER stress-associated mitochondrial fission that could be targeted to improve PDAC patient outcomes.

3.
Mol Biol Rep ; 51(1): 993, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292293

RESUMO

BACKGROUND: Misfolded proteins accumulate in the liver due to endoplasmic reticulum stress (ERS) caused by high blood glucose levels in diabetes. This triggers the unfolded protein response (UPR), which if persistently activated, results in cellular dysfunction. Chronic ER stress increases inflammation, insulin resistance, and apoptosis. There is growing interest in using native plants and traditional medicine for diabetes treatment. The stevia plant has recently gained attention for its potential therapeutic effects. This study investigates the protective effects of aquatic stevia extract on liver damage, ER stress, and the UPR pathway in streptozotocin (STZ)-induced diabetic rats. METHODS: Rats were randomly divided into four groups: a control group that received 1 ml of water; a diabetic group induced by intraperitoneal injection of STZ (60 mg/kg); a diabetic group treated with metformin (500 mg/kg); and a diabetic group treated with aquatic extracts of stevia (400 mg/kg). After 28 days, various parameters were assessed, including inflammatory markers, oxidative stress indices, antioxidant levels, gene expression, stereology, and liver tissue pathology. RESULT: Compared to the diabetic control group, treatment with stevia significantly decreased serum glucose, liver enzymes, inflammatory markers, and oxidative stress while increasing body weight and antioxidant levels. Additionally, stevia extract manipulated UPR gene expression and reduced apoptosis pathway activation. Histological examination revealed improved liver tissue morphology in stevia-treated diabetic rats. CONCLUSION: These findings suggest that aquatic stevia extract mitigates ER stress in diabetic rats by modulating the IRE-1 arm of the UPR and apoptosis pathways, highlighting its potential therapeutic benefits for diabetes-related liver complications.


Assuntos
Diabetes Mellitus Experimental , Estresse do Retículo Endoplasmático , Fígado , Estresse Oxidativo , Extratos Vegetais , Stevia , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Stevia/química , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Extratos Vegetais/farmacologia , Ratos , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Estreptozocina , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Hipoglicemiantes/farmacologia
4.
Sci Total Environ ; 954: 176275, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278487

RESUMO

6-PPD quinone (6-PPDQ) exists widely in water environment media, causing acute lethality to some aquatic species. Long-term exposure to 6-PPDQ reduced the lifespan of Caenorhabditis elegans. However, the molecular basis for mitochondrial control of 6-PPDQ toxicity remains largely unclear. Using HSP-6 as marker of mitochondrial unfolded protein response (mt UPR), we observed activation of mt UPR by 0.1 and 1 µg/L 6-PPDQ and inhibition in mt UPR by 10 µg/L 6-PPDQ. Additionally, increased atfs-1, ubl-5, and dve-1 expressions were caused by 0.1 and 1 µg/L 6-PPDQ and decreased expressions of these genes were induced by 10 µg/L 6-PPDQ. Neuronal and intestinal RNA interference (RNAi) of hsp-6 caused susceptibility to 6-PPDQ toxicity on longevity, and atfs-1, ubl-5, and dve-1 acted in neurons and intestine to modulate mt UPR and 6-PPDQ toxicity on longevity. Meanwhile, 6-PPDQ (1 and 10 µg/L) increased expressions of histone methyltransferase genes met-2 and set-6, and decreased expressions of histone demethylase genes jmjd-1.2 and jmjd-3.1. Neuronal RNAi of set-6 and intestinal RNAi of met-2 accelerated hsp-6, atfs-1, ubl-5, and dve-1 expressions and extended lifespan of 6-PPDQ exposed nematodes. In contrast, neuronal RNAi of jmjd-1.2 and jmjd-3.1 and intestinal RNAi of jmjd-1.2 suppressed these 4 gene expressions and reduced lifespan of 6-PPDQ exposed nematodes o. In nematodes, RNAi of hsp-6 could also enhance mitochondrial dysfunction and mitochondrial reactive oxygen species (ROS) induced by 6-PPDQ. Therefore, 6-PPDQ caused damage on longevity was associated with suppression in mt UPR, which was under regulation of certain histone methylation related signals.

5.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39337383

RESUMO

Duchenne muscular dystrophy is secondarily accompanied by Ca2+ excess in muscle fibers. Part of the Ca2+ accumulates in the mitochondria, contributing to the development of mitochondrial dysfunction and degeneration of muscles. In this work, we assessed the effect of intraperitoneal administration of rhodacyanine MKT077 (5 mg/kg/day), which is able to suppress glucose-regulated protein 75 (GRP75)-mediated Ca2+ transfer from the sarcoplasmic reticulum (SR) to mitochondria, on the Ca2+ overload of skeletal muscle mitochondria in dystrophin-deficient mdx mice and the concomitant mitochondrial dysfunction contributing to muscle pathology. MKT077 prevented Ca2+ overload of quadriceps mitochondria in mdx mice, reduced the intensity of oxidative stress, and improved mitochondrial ultrastructure, but had no effect on impaired oxidative phosphorylation. MKT077 eliminated quadriceps calcification and reduced the intensity of muscle fiber degeneration, fibrosis level, and normalized grip strength in mdx mice. However, we noted a negative effect of MKT077 on wild-type mice, expressed as a decrease in the efficiency of mitochondrial oxidative phosphorylation, SR stress development, ultrastructural disturbances in the quadriceps, and a reduction in animal endurance in the wire-hanging test. This paper discusses the impact of MKT077 modulation of mitochondrial dysfunction on the development of skeletal muscle pathology in mdx mice.


Assuntos
Cálcio , Distrofina , Camundongos Endogâmicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne , Animais , Camundongos , Cálcio/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Distrofina/metabolismo , Distrofina/deficiência , Distrofina/genética , Estresse Oxidativo/efeitos dos fármacos , Masculino , Fosforilação Oxidativa/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/patologia , Mitocôndrias Musculares/ultraestrutura
6.
Handb Clin Neurol ; 205: 83-97, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39341664

RESUMO

Neurodegenerative diseases pose a substantial unmet medical need, and no disease-modifying treatments exist. Neurotrophic factors have been studied for decades as a therapy to slow down or stop the progression of these diseases. In this chapter, we focus on Parkinson disease, the second most common neurodegenerative disorder, and on studies carried out with neurotrophic factors. We explore the routes of administration, how the invasive intracranial administration is the challenge, and different ways to deliver the therapeutic proteins, for example, gene therapy and protein therapy. This therapy concept has been developed to mostly work on the restoration of the lost nigrostriatal dopaminergic neuronal connectivity in the brain. However, in recent years, the center of attention of neurotrophic factors has been on maintaining proteostasis and dissolving and preventing protein inclusions called Lewy bodies. We describe the most studied neurotrophic factor families and compare different preclinical experiments that have been carried out. We also analyze several clinical trials and describe their challenges and breakthroughs and discuss the prospects and challenges of neurotrophic support as a therapy for neurodegenerative diseases. In this chapter, we discuss why they still do and why it is essential to continue to work with this area of neurorestorative research around neurotrophic factors.


Assuntos
Terapia Genética , Fatores de Crescimento Neural , Doenças Neurodegenerativas , Humanos , Animais , Terapia Genética/métodos , Fatores de Crescimento Neural/uso terapêutico , Fatores de Crescimento Neural/metabolismo , Doenças Neurodegenerativas/terapia
7.
Cells ; 13(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273068

RESUMO

ER-phagy is a specialized form of autophagy, defined by the lysosomal degradation of ER subdomains. ER-phagy has been implicated in relieving the ER from misfolded proteins during ER stress upon activation of the unfolded protein response (UPR). Here, we identified an essential role for the ER chaperone calnexin in regulating ER-phagy and the UPR in neurons. We showed that chemical induction of ER stress triggers ER-phagy in the somata and axons of primary cultured motoneurons. Under basal conditions, the depletion of calnexin leads to an enhanced ER-phagy in axons. However, upon ER stress induction, ER-phagy did not further increase in calnexin-deficient motoneurons. In addition to increased ER-phagy under basal conditions, we also detected an elevated proteasomal turnover of insoluble proteins, suggesting enhanced protein degradation by default. Surprisingly, we detected a diminished UPR in calnexin-deficient early cortical neurons under ER stress conditions. In summary, our data suggest a central role for calnexin in orchestrating both ER-phagy and the UPR to maintain protein homeostasis within the ER.


Assuntos
Calnexina , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Calnexina/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Camundongos , Autofagia , Neurônios Motores/metabolismo , Axônios/metabolismo , Células Cultivadas , Lisossomos/metabolismo , Neurônios/metabolismo
8.
Adv Exp Med Biol ; 1460: 539-574, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287864

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.


Assuntos
Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Resistência à Insulina , Fígado/patologia , Fígado/metabolismo , Progressão da Doença , Estresse Oxidativo , Índice de Gravidade de Doença , Animais
9.
Vet Res ; 55(1): 107, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227990

RESUMO

The endoplasmic reticulum (ER) is a unique organelle responsible for protein synthesis and processing, lipid synthesis in eukaryotic cells, and the replication of many animal viruses is closely related to ER. A considerable number of viral proteins are synthesised during viral infection, resulting in the accumulation of unfolded and misfolded proteins in ER, which in turn induces endoplasmic reticulum stress (ERS). ERS further drives three signalling pathways (PERK, IRE1, and ATF6) of the cellular unfolded protein response (UPR) to respond to the ERS. In numerous studies, ERS has been shown to mediate autophagy, a highly conserved cellular degradation mechanism to maintain cellular homeostasis in eukaryotic cells, through the UPR to restore ER homeostasis. ERS-mediated autophagy is closely linked to the occurrence and development of numerous viral diseases in animals. Host cells can inhibit viral replication by regulating ERS-mediated autophagy, restoring the ER's normal physiological process. Conversely, many viruses have evolved strategies to exploit ERS-mediated autophagy to achieve immune escape. These strategies include the regulation of PERK-eIF2α-Beclin1, PERK-eIF2α-ATF4-ATG12, IRE1α-JNK-Beclin1, and other signalling pathways, which provide favourable conditions for the replication of animal viruses in host cells. The ERS-mediated autophagy pathway has become a hot topic in animal virological research. This article reviews the most recent research regarding the regulatory functions of ERS-mediated autophagy pathways in animal viral infections, emphasising the underlying mechanisms in the context of different viral infections. Furthermore, it considers the future direction and challenges in the development of ERS-mediated autophagy targeting strategies for combating animal viral diseases, which will contribute to unveiling their pathogenic mechanism from a new perspective and provide a scientific reference for the discovery and development of new antiviral drugs and preventive strategies.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Viroses , Autofagia/fisiologia , Animais , Estresse do Retículo Endoplasmático/fisiologia , Viroses/veterinária , Viroses/virologia , Transdução de Sinais
10.
Genes Cells ; 29(10): 889-901, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39138929

RESUMO

Endoplasmic reticulum stress triggers the unfolded protein response (UPR) to promote cell survival or apoptosis. Transient endoplasmic reticulum stress activation has been reported to trigger megakaryocyte production, and UPR activation has been reported as a feature of megakaryocytic cancers. However, the role of UPR signaling in megakaryocyte biology is not fully understood. We studied the involvement of UPR in human megakaryocytic differentiation using PMA (phorbol 12-myristate 13-acetate)-induced maturation of megakaryoblastic cell lines and thrombopoietin-induced differentiation of human peripheral blood-derived progenitors. Our results demonstrate that an adaptive UPR is a feature of megakaryocytic differentiation and that this response is not associated with ER stress-induced apoptosis. Differentiation did not alter the response to the canonical endoplasmic reticulum stressors DTT or thapsigargin. However, thapsigargin, but not DTT, inhibited differentiation, consistent with the involvement of Ca2+ signaling in megakaryocyte differentiation.


Assuntos
Diferenciação Celular , Megacariócitos , Resposta a Proteínas não Dobradas , Humanos , Megacariócitos/metabolismo , Megacariócitos/citologia , Estresse do Retículo Endoplasmático , Apoptose , Tapsigargina/farmacologia , Linhagem Celular , Acetato de Tetradecanoilforbol/farmacologia
11.
NeuroImmune Pharm Ther ; 3(2): 139-154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39175523

RESUMO

Objectives: Human immunodeficiency virus 1 (HIV-1) can invade the central nervous system (CNS) early during infection and persist in the CNS for life despite effective antiretroviral treatment. Infection and activation of residential glial cells lead to low viral replication and chronic inflammation, which damage neurons contributing to a spectrum of HIV-associated neurocognitive disorders (HAND). Substance use, including methamphetamine (METH), can increase one's risk and severity of HAND. Here, we investigate HIV-1/METH co-treatment in a key neurosupportive glial cell, astrocytes. Specifically, mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) signaling pathways, such as calcium and the unfolded protein response (UPR), are key mechanisms underlying HAND pathology and arise as potential targets to combat astrocyte dysfunction. Methods: Primary human astrocytes were transduced with a pseudotyped HIV-1 model and exposed to low-dose METH for seven days. We assessed changes in astrocyte HIV-1 infection, inflammation, mitochondrial antioxidant and dynamic protein expression, respiratory acitivity, mitochondrial calcium flux, and UPR/MAM mediator expression. We then tested a selective antagonist for METH-binding receptor, trace amine-associated receptor 1 (TAAR1) as a potetnial upstream regulator of METH-induced calcium flux and UPR/MAM mediator expression. Results: Chronic METH exposure increased astrocyte HIV-1 infection. Moreover, HIV-1/METH co-treatment suppressed astrocyte antioxidant and metabolic capacity while increasing mitochondrial calcium load and protein expression of UPR messengers and MAM mediators. Notably, HIV-1 increases astrocyte TAAR1 expression, thus, could be a critical regulator of HIV-1/METH co-treatment in astrocytes. Indeed, selective antagonism of TAAR1 significantly inhibited cytosolic calcium flux and induction of UPR/MAM protein expression. Conclusion: Altogether, our findings demonstrate HIV-1/METH-induced ER-mitochondrial dysfunction in astrocytes, whereas TAAR1 may be an upstream regulator for HIV-1/METH-mediated astrocyte dysfunction.

12.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119824, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39168412

RESUMO

Proteostasis, including protein folding mediated by molecular chaperones, protein degradation, and stress response pathways in organelles like ER (unfolded protein response: UPR), are responsible for cellular protein quality control. This is essential for cell survival as it regulates and reprograms cellular processes. Here, we underscore the role of the proteostasis pathway in Apicomplexan parasites with respect to their well-characterized roles as well as potential roles in many parasite functions, including survival, multiplication, persistence, and emerging drug resistance. In addition to the diverse physiological importance of proteostasis in Apicomplexa, we assess the potential of the pathway's components as chemotherapeutic targets.

13.
Front Pharmacol ; 15: 1413853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119608

RESUMO

The average lifespan of humans has been increasing, resulting in a rapidly rising percentage of older individuals and high morbidity of aging-associated diseases, especially cardiovascular diseases (CVDs). Diverse intracellular and extracellular factors that interrupt homeostatic functions in the endoplasmic reticulum (ER) induce ER stress. Cells employ a dynamic signaling pathway of unfolded protein response (UPR) to buffer ER stress. Recent studies have demonstrated that ER stress triggers various cellular processes associated with aging and many aging-associated diseases, including CVDs. Autophagy is a conserved process involving lysosomal degradation and recycling of cytoplasmic components, proteins, organelles, and pathogens that invade the cytoplasm. Autophagy is vital for combating the adverse influence of aging on the heart. The present report summarizes recent studies on the mechanism of ER stress and autophagy and their overlap in aging and on CVD pathogenesis in the context of aging. It also discusses possible therapeutic interventions targeting ER stress and autophagy that might delay aging and prevent or treat CVDs.

14.
Extracell Vesicles Circ Nucl Acids ; 5(2): 249-258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39118980

RESUMO

Aim: Tumor-infiltrating macrophages are tumor-promoting and show activation of the unfolded protein response (UPR). The transcription factor X-box binding protein 1 (XBP1) is a conserved element of the UPR. Upon activation, the UPR mediates the transcriptional activation of pro-inflammatory cytokines and immune suppressive factors, hence contributing to immune dysregulation in the tumor microenvironment (TME). miR-214 is a short non-coding miRNA that targets the 3'-UTR of the Xbp1 transcript. Here, we tested a new method to efficiently deliver miR-214 to macrophages as a potential new therapeutic approach. Methods: We generated miR-214-laden extracellular vesicles (iEV-214) in a murine B cell and demonstrated that iEV-214 were enriched in miR-214 between 1,500 - 2,000 fold relative to control iEVs. Results: Bone marrow-derived macrophages (BMDM) treated with iEV-214 for 24 h underwent a specific enrichment in miR-214, suggesting transfer of the miR-214 payload from the iEVs to macrophages. iEV-214 treatment of BMDM markedly reduced (> 50%) Xbp1 transcription under endoplasmic reticulum stress conditions compared to controls. Immune-related genes downstream of XBP1s (Il-6, Il-23p19, and Arg1) were also reduced by 69%, 51%, and 34%, respectively. Conclusions: Together, these data permit to conclude that iEV-214 are an efficient strategy to downregulate the expression of Xbp1 mRNA and downstream genes in macrophages. We propose miRNA-laden iEVs are a new approach to target macrophages and control immune dysregulation in the TME.

15.
Diagn Microbiol Infect Dis ; 110(4): 116500, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39213902

RESUMO

Tauroursodeoxycholic acid (TUDCA) is a naturally occurring hydrophilic bile acid that alleviates endoplasmic reticulum (ER) stress and inhibits apoptosis, thereby protecting cells. Previous studies have shown that enterovirus 71 (EV71) infection modulates ER stress and induces autophagy to assist viral replication. This study observed the effects of TUDCA pretreatment on HeLa and Vero cells infected with EV71, finding that TUDCA inhibits EV71 replication in TUDCA pretreated HeLa and Vero cells in a dose-dependent manner. We found that TUDCA pretreatment inhibited EV71 replication by regulating three branches of UPR, that is up-regulated ATF6, down-regulated both PERK and IRE1. The results also indicated that autophagy which is downstream of UPR, was inhibited either. The results indicate that TUDCA inhibits EV71 replication by regulating UPR sensor proteins and autophagy following ER stress.

16.
MedComm (2020) ; 5(9): e701, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39188936

RESUMO

The endoplasmic reticulum (ER) is a key organelle in eukaryotic cells, responsible for a wide range of vital functions, including the modification, folding, and trafficking of proteins, as well as the biosynthesis of lipids and the maintenance of intracellular calcium homeostasis. A variety of factors can disrupt the function of the ER, leading to the aggregation of unfolded and misfolded proteins within its confines and the induction of ER stress. A conserved cascade of signaling events known as the unfolded protein response (UPR) has evolved to relieve the burden within the ER and restore ER homeostasis. However, these processes can culminate in cell death while ER stress is sustained over an extended period and at elevated levels. This review summarizes the potential role of ER stress and the UPR in determining cell fate and function in various diseases, including cardiovascular diseases, neurodegenerative diseases, metabolic diseases, autoimmune diseases, fibrotic diseases, viral infections, and cancer. It also puts forward that the manipulation of this intricate signaling pathway may represent a novel target for drug discovery and innovative therapeutic strategies in the context of human diseases.

17.
J Exp Bot ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169567

RESUMO

Non-specific phospholipase C (NPC) is an emerging family of lipolytic enzymes unique to plants and bacteria that play crucial roles in growth and stress responses. Among six copies of NPC isoforms found in Arabidopsis, the role of NPC3 remains elusive to date. Here, we show that NPC3 is a functional non-specific phospholipase C involved in tolerance to tunicamycin (TM)-induced endoplasmic reticulum (ER) stress through the synthesis of phosphocholine (PCho), a reaction product of NPC3. The npc3 mutant exhibited reduced sensitivity to TM treatment. Recombinant NPC3 possessed pronounced phospholipase C activity that hydrolyses phosphatidylcholine (PC). The hyposensitivity of npc3 to TM treatment was complemented by exogenous PCho, suggesting that NPC3-catalysed PCho production is involved in TM-induced ER stress tolerance. NPC3 was localized at the ER and was predominantly expressed in the roots, and it was further induced by TM-induced ER stress. Intriguingly, npc3 mutants showed a markedly reduced PCho content in shoots under ER stress. Our results indicate that ER stress induces NPC3 to produce PCho, which is involved in TM-induced ER stress tolerance.

18.
Neuropeptides ; 108: 102461, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39180950

RESUMO

The molecular mechanisms underlying neuronal leptin and insulin resistance in obesity and diabetes are not fully understood. In this study, we show that induction of the unfolded protein response transcription factor, spliced X-box binding protein 1 (Xbp1s), in Agouti-Related Peptide (AgRP) neurons alone, is sufficient to not only protect against but also significantly reverse diet-induced obesity (DIO) as well as improve leptin and insulin sensitivity, despite activation of endoplasmic reticulum stress. We also demonstrate that constitutive expression of Xbp1s in AgRP neurons contributes to improved insulin sensitivity and glucose tolerance. Together, our results identify critical molecular mechanisms linking ER stress in arcuate AgRP neurons to acute leptin and insulin resistance as well as liver glucose metabolism in DIO and diabetes.

19.
Adv Sci (Weinh) ; 11(34): e2401731, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981028

RESUMO

Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder leading to cognitive decline. Excessive cytosolic calcium (Ca2+) accumulation plays a critical role in the pathogenesis of AD since it activates the NOD-like receptor family, pyrin domain containing 3 (NLRP3), switches the endoplasmic reticulum (ER) unfolded protein response (UPR) toward proapoptotic signaling and promotes Aß seeding. Herein, a liposomal nanodrug (felodipine@LND) is developed incorporating a calcium channel antagonist felodipine for Alzheimer's disease treatment through a low-intensity pulse ultrasound (LIPUS) irradiation-assisted blood brain barrier (BBB)-crossing drug delivery. The multifunctional felodipine@LND is effectively delivered to diseased brain through applying a LIPUS irradiation to the skull, which resulted in a series of positive effects against AD. Markedly, the nanodrug treatment switched the ER UPR toward antioxidant signaling, prevented the surface translocation of ER calreticulin (CALR) in microglia, and inhibited the NLRP3 activation and Aß seeding. In addition, it promoted the degradation of damaged mitochondria via mitophagy, thereby inhibiting the neuronal apoptosis. Therefore, the anxiety-like behavior and cognitive impairment of 5xFAD mice with AD is significantly ameliorated, which manifested the potential of LIPUS - assisted BBB-crossing delivery of felodipine@LND to serve as a paradigm for AD therapy based on the well-recognized clinically available felodipine.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Disfunção Cognitiva , Modelos Animais de Doenças , Felodipino , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Camundongos , Disfunção Cognitiva/tratamento farmacológico , Felodipino/farmacologia , Ansiedade/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Comportamento Animal/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia
20.
Plant Cell Environ ; 47(11): 4383-4397, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38988259

RESUMO

Loss of Lon1 led to stunted plant growth and accumulation of nuclear-encoded mitochondrial proteins including Lon1 substrates. However, an in-depth label-free proteomics quantification of mitochondrial proteins in lon1 revealed that the majority of mitochondrial-encoded proteins decreased in abundance. Additionally, we found that lon1 mutants contained protein aggregates in the mitochondrial that were enriched in metabolic enzymes, ribosomal subunits and PPR-containing proteins of the translation apparatus. These mutants exhibited reduced general mitochondrial translation as well as deficiencies in RNA splicing and editing. These findings support the role of Lon1 in maintaining a functional translational apparatus for mitochondrial-encoded gene translation. Transcriptome analysis of lon1 revealed a mitochondrial unfolded protein response reminiscent of the mitochondrial retrograde signalling dependent on the transcription factor ANAC017. Notably, lon1 mutants exhibited transiently elevated ethylene production, and the shortened hypocotyl observed in lon1 mutants during skotomorphogenesis was partially alleviated by ethylene inhibitors. Furthermore, the short root phenotype was partially ameliorated by introducing a mutation in the ethylene receptor ETR1. Interestingly, the upregulation of only a select few target genes was linked to ETR1-mediated ethylene signalling. Together this provides multiple steps in the link between loss of Lon1 and signalling responses to restore mitochondrial protein homoeostasis in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mitocôndrias , Proteínas Mitocondriais , Resposta a Proteínas não Dobradas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Biossíntese de Proteínas , Regulação da Expressão Gênica de Plantas , Agregados Proteicos , Mutação , Transdução de Sinais , Etilenos/metabolismo , Proteômica , Proteases Dependentes de ATP/metabolismo , Proteases Dependentes de ATP/genética , Serina Endopeptidases , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA