Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 655: 43-54, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30098984

RESUMO

Pathological α-synuclein (α-syn) overexpression and iron (Fe)-induced oxidative stress (OS) are involved in the death of dopaminergic neurons in Parkinson's disease (PD). We have previously characterized the role of triacylglycerol (TAG) formation in the neuronal response to Fe-induced OS. In this work we characterize the role of the α-syn variant A53T during Fe-induced injury and investigate whether lipid metabolism has implications for neuronal fate. To this end, we used the N27 dopaminergic neuronal cell line either untransfected (UT) or stably transfected with pcDNA3 vector (as a transfection control) or pcDNA-A53T-α-syn (A53T α-syn). The overexpression of A53T α-syn triggered an increase in TAG content mainly due to the activation of Acyl-CoA synthetase. Since fatty acid (FA) ß-oxidation and phospholipid content did not change in A53T α-syn cells, the unique consequence of the increase in FA-CoA derivatives was their acylation in TAG moieties. Control cells exposed to Fe-induced injury displayed increased OS markers and TAG content. Intriguingly, Fe exposure in A53T α-syn cells promoted a decrease in OS markers accompanied by α-syn aggregation and elevated TAG content. We report here new evidence of a differential role played by A53T α-syn in neuronal lipid metabolism as related to the neuronal response to OS.


Assuntos
Ferro/toxicidade , Neurônios/metabolismo , alfa-Sinucleína/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/genética , Gotículas Lipídicas/metabolismo , Mutação , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transfecção/métodos , Triglicerídeos/metabolismo , alfa-Sinucleína/genética
2.
Exp Eye Res ; 113: 172-81, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23791636

RESUMO

Iron accumulation and oxidative stress are hallmarks of retinas from patients with age-related macular degeneration (AMD). We have previously demonstrated that iron-overloaded retinas are a good in vitro model for the study of retinal degeneration during iron-induced oxidative stress. In this model we have previously characterized the role of cytosolic phospholipase A2 (cPLA2) and calcium-independent isoform (iPLA2). The aim of the present study was to analyze the implications of Group V secretory PLA2 (sPLA2), another member of PLA2 family, in cyclooxygenase (COX)-2 and nuclear factor kappa B (NF-κB) regulation. We found that sPLA2 is localized in cytosolic fraction in an iron concentration-dependent manner. By immunoprecipitation (IP) assays we also demonstrated an increased association between Group V sPLA2 and COX-2 in retinas exposed to iron overload. However, COX-2 activity in IP assays was observed to decrease in spite of the increased protein levels observed. p65 (RelA) NF-κB levels were increased in nuclear fractions from retinas exposed to iron. In the presence of ATK (cPLA2 inhibitor) and YM 26734 (sPLA2 inhibitor), the nuclear localization of both p65 and p50 NF-κB subunits was restored to control levels in retinas exposed to iron-induced oxidative stress. Membrane repair mechanisms were also analyzed by studying the participation of acyltransferases in phospholipid remodeling during retinal oxidation stress. Acidic phospholipids, such as phosphatidylinositol (PI) and phosphatidylserine (PS), were observed to show an inhibited acylation profile in retinas exposed to iron while phosphatidylethanolamine (PE) showed the opposite. The use of PLA2 inhibitors demonstrated that PS is actively deacylated during iron-induced oxidative stress. Results from the present study suggest that Group V sPLA2 has multiple intracellular targets during iron-induced retinal degeneration and that the specific role of sPLA2 could be related to inflammatory responses by its participation in NF-κB and COX-2 regulation.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Fosfolipases A2 do Grupo V/fisiologia , Degeneração Macular/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Retina/efeitos dos fármacos , Acetilação , Acetiltransferases/metabolismo , Animais , Western Blotting , Bovinos , Citosol/metabolismo , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Compostos Ferrosos/toxicidade , Fosfolipases A2 do Grupo V/antagonistas & inibidores , Sobrecarga de Ferro/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipases A/metabolismo , Fosfolipases A/fisiologia , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA