Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 9: e10655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33680577

RESUMO

This work explores (non)linear associations between relative humidity and temperature and the incidence of COVID-19 among 27 Brazilian state capital cities in (sub)tropical climates, measured daily from summer through winter. Previous works analyses have shown that SARS-CoV-2, the virus that causes COVID-19, finds stability by striking a certain balance between relative humidity and temperature, which indicates the possibility of surface contact transmission. The question remains whether seasonal changes associated with climatic fluctuations might actively influence virus survival. Correlations between climatic variables and infectivity rates of SARS-CoV-2 were applied by the use of a Generalized Additive Model (GAM) and the Locally Estimated Scatterplot Smoothing LOESS nonparametric model. Tropical climates allow for more frequent outdoor human interaction, making such areas ideal for studies on the natural transmission of the virus. Outcomes revealed an inverse relationship between subtropical and tropical climates for the spread of the novel coronavirus and temperature, suggesting a sensitivity behavior to climates zones. Each 1 °C rise of the daily temperature mean correlated with a -11.76% (t = -5.71, p < 0.0001) decrease and a 5.66% (t = 5.68, p < 0.0001) increase in the incidence of COVID-19 for subtropical and tropical climates, respectively.

2.
Int J Hyg Environ Health ; 229: 113587, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32917371

RESUMO

This study aimed to evaluate the relationship between weather factors (temperature, humidity, solar radiation, wind speed, and rainfall) and COVID-19 infection in the State of Rio de Janeiro, Brazil. Solar radiation showed a strong (-0.609, p < 0.01) negative correlation with the incidence of novel coronavirus (SARS-CoV-2). Temperature (maximum and average) and wind speed showed negative correlation (p < 0.01). Therefore, in this studied tropical state, high solar radiation can be indicated as the main climatic factor that suppress the spread of COVID-19. High temperatures, and wind speed also are potential factors. Therefore, the findings of this study show the ability to improve the organizational system of strategies to combat the pandemic in the State of Rio de Janeiro, Brazil, and other tropical countries around the word.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Clima Tropical , Tempo (Meteorologia) , Brasil/epidemiologia , COVID-19 , Infecções por Coronavirus/virologia , Humanos , Umidade , Incidência , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Temperatura , Vento
3.
Sci Total Environ ; 729: 138862, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32361443

RESUMO

The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil. Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil. The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a -4.8951% (t = -2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053. In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Brasil , COVID-19 , Cidades , Humanos , SARS-CoV-2 , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA