Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Exp Cell Res ; 440(1): 114126, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38857838

RESUMO

Microtubules are components of the cytoskeleton that perform essential functions in eukaryotes, such as those related to shape change, motility and cell division. In this context some characteristics of these filaments are essential, such as polarity and dynamic instability. In trypanosomatids, microtubules are integral to ultrastructure organization, intracellular transport and mitotic processes. Some species of trypanosomatids co-evolve with a symbiotic bacterium in a mutualistic association that is marked by extensive metabolic exchanges and a coordinated division of the symbiont with other cellular structures, such as the nucleus and the kinetoplast. It is already established that the bacterium division is microtubule-dependent, so in this work, it was investigated whether the dynamism and remodeling of these filaments is capable of affecting the prokaryote division. To this purpose, Angomonas deanei was treated with Trichostatin A (TSA), a deacetylase inhibitor, and mutant cells for histone deacetylase 6 (HDAC6) were obtained by CRISPR-Cas9. A decrease in proliferation, an enhancement in tubulin acetylation, as well as morphological and ultrastructural changes, were observed in TSA-treated protozoa and mutant cells. In both cases, symbiont filamentation occurred, indicating that prokaryote cell division is dependent on microtubule dynamism.


Assuntos
Divisão Celular , Microtúbulos , Simbiose , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Microtúbulos/efeitos dos fármacos , Trypanosomatina/genética , Trypanosomatina/metabolismo , Trypanosomatina/ultraestrutura , Trypanosomatina/fisiologia , Ácidos Hidroxâmicos/farmacologia , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Bactérias/metabolismo , Bactérias/genética , Acetilação , Inibidores de Histona Desacetilases/farmacologia , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura
2.
Braz. j. med. biol. res ; 57: e12874, fev.2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1557324

RESUMO

More attention has been paid to immunotherapy for ovarian cancer and the development of tumor vaccines. We developed a trichostatin A (TSA)-modified tumor vaccine with potent immunomodulating activities that can inhibit the growth of ovarian cancer in rats and stimulate immune cell response in vivo. TSA-treated Nutu-19 cells inactivated by X-ray radiation were used as a tumor vaccine in rat ovarian cancer models. Prophylactic and therapeutic experiments were performed with TSA-modified tumor vaccine in rats. Flow cytometry and ELISpot assays were conducted to assess immune response. Immune cell expression in the spleen and thymus were detected by immunohistochemical staining. GM-CSF, IL-7, IL-17, LIF, LIX, KC, MCP-1, MIP-2, M-CSF, IP-10/CXCL10, MIG/CXCL9, RANTES, IL-4, IFN-γ, and VEGF expressions were detected with Milliplex Map Magnetic Bead Panel immunoassay. TSA vaccination in therapeutic and prophylactic models could effectively stimulate innate immunity and boost the adaptive humoral and cell-mediated immune responses to inhibit the growth and tumorigenesis of ovarian cancer. This vaccine stimulated the thymus into reactivating status and enhanced infiltrating lymphocytes in tumor-bearing rats. The expression of key immunoregulatory factors were upregulated in the vaccine group. The intensities of infiltrating CD4+ and CD8+ T cells and NK cells were significantly increased in the vaccine group compared to the control group (P<0.05). This protection was mainly dependent on the IFN-γ pathway and, to a much lesser extent, by the IL-4 pathway. The tumor cells only irradiated by X-ray as the control group still showed a slight immune effect, indicating that irradiated cells may also cause certain immune antigen exposure, but the efficacy was not as significant as that of the TSA-modified tumor vaccine. Our study revealed the potential application of the TSA-modified tumor vaccine as a novel tumor vaccine against tumor refractoriness and growth. These findings offer a better understanding of the immunomodulatory effects of the vaccine against latent tumorigenesis and progression. This tumor vaccine therapy may increase antigen exposure, synergistically activate the immune system, and ultimately improve remission rates. A vaccine strategy designed to induce effective tumor immune response is being considered for cancer immunotherapy.

3.
Rev. argent. microbiol ; Rev. argent. microbiol;55(4): 4-4, Dec. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1550711

RESUMO

Abstract Chromatin remodeling enzymes are important "writers'', "readers'' and "erasers'' of the epigenetic code. These proteins are responsible for the placement, recognition, and removal of molecular marks in histone tails that trigger structural and functional changes in chromatin. This is also the case for histone deacetylases (HDACs), i.e., enzymes that remove acetyl groups from histone tails, signaling heterochromatin formation. Chromatin remodeling is necessary for cell differentiation processes in eukaryotes, and fungal pathogenesis in plants includes many adaptations to cause disease. Macrophomina phaseolina (Tassi) Goid. is a nonspe-cific, necrotrophic ascomycete phytopathogen that causes charcoal root disease. M. phaseolina is a frequent and highly destructive pathogen in crops such as common beans (Phaseolus vulgaris L.), particularly under both water and high temperature stresses. Here, we evaluated the effects of the classical HDAC inhibitor trichostatin A (TSA) on M. phaseolina in vitro growth and virulence. During inhibition assays, the growth of M. phaseolina in solid media, as well as the size of the microsclerotia, were reduced (p <0.05), and the colony morphology was remark-ably affected. Under greenhouse experiments, treatment with TSA reduced (p <0.05) fungal virulence in common bean cv. BAT 477. Tests of LIPK, MAC1 and PMK1 gene expression during the interaction of fungi with BAT 477 revealed noticeable deregulation. Our results provide additional evidence about the role of HATs and HDACs in important biological processes of M. phaseolina.


Resumen Las enzimas remodeladoras de la cromatina son «escritores¼, «lectores¼ y «borradores¼ importantes del código epigenético. Estas proteínas son responsables de la localización, el reconocimiento y la remoción de las marcas moleculares sobre las terminaciones de las histonas que desencadenan cambios funcionales y estructurales en la cromatina. Es el caso de las desacetilasas de histonas (HDAC), enzimas que remueven grupos acetilo de las «colas¼ de las histonas, señalizando la formación de heterocromatina. La anterior es una actividad necesaria en los procesos de diferenciación celular de los eucariotas, y se conoce que la patogénesis fúngica en las plantas requiere de adaptaciones diversas para ocasionar enfermedad. Macrophomina phaseolina (Tassi) Goid. es un ascomiceto fitopatógeno, necrótrofo e inespecífico, causante de la pudrición carbonosa. Este es un hongo frecuente y altamente destructivo en cultivos como fríjol común (Phaseolus vulgaris L.), particularmente bajo estrés hídrico y térmico. En este trabajo evaluamos los efectos del inhibidor de HDAC clásicas tricostatina A (TSA) sobre el crecimiento in vitro y la virulencia de M. phaseolina. El TSA redujo el crecimiento de M. phaseolina en medio sólido y el tamano de los microesclerocios (p < 0,05), lo que afectó la morfología colonial. En invernadero, el tratamiento con TSA disminuyó (p<0,05) la gravedad de la infección en la variedad de frijol BAT 477. La expresión de los genes de patogenicidad LIPK, MAC1 y PMK1 durante la interacción del hongo con la planta reveló una desregulación importante. Estos resultados proporcionan evidencia adicional del papel que cumplen las HDAC en la regulación de procesos biológicos fundamentales de M. phaseolina. © 2023 Asociación Argentina de Microbiología. Publicado por Elsevier Espana, S.L.U.

4.
Rev Argent Microbiol ; 55(4): 296-306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37296064

RESUMO

Chromatin remodeling enzymes are important "writers", "readers" and "erasers" of the epigenetic code. These proteins are responsible for the placement, recognition, and removal of molecular marks in histone tails that trigger structural and functional changes in chromatin. This is also the case for histone deacetylases (HDACs), i.e., enzymes that remove acetyl groups from histone tails, signaling heterochromatin formation. Chromatin remodeling is necessary for cell differentiation processes in eukaryotes, and fungal pathogenesis in plants includes many adaptations to cause disease. Macrophomina phaseolina (Tassi) Goid. is a nonspecific, necrotrophic ascomycete phytopathogen that causes charcoal root disease. M. phaseolina is a frequent and highly destructive pathogen in crops such as common beans (Phaseolus vulgaris L.), particularly under both water and high temperature stresses. Here, we evaluated the effects of the classical HDAC inhibitor trichostatin A (TSA) on M. phaseolinain vitro growth and virulence. During inhibition assays, the growth of M. phaseolina in solid media, as well as the size of the microsclerotia, were reduced (p<0.05), and the colony morphology was remarkably affected. Under greenhouse experiments, treatment with TSA reduced (p<0.05) fungal virulence in common bean cv. BAT 477. Tests of LIPK, MAC1 and PMK1 gene expression during the interaction of fungi with BAT 477 revealed noticeable deregulation. Our results provide additional evidence about the role of HATs and HDACs in important biological processes of M. phaseolina.


Assuntos
Ascomicetos , Histonas , Histonas/farmacologia , Histona Desacetilases/farmacologia , Virulência
5.
Braz. J. Pharm. Sci. (Online) ; 57: e19033, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1345461

RESUMO

Previously, we evaluated the effect of trichostatin A (TSA) on the expression of DNA methyltransferase 1 (DNMT1) in Hepatocellular Carcinoma (HCC). Fragile histidine triad (FHIT) and WW domain-containing oxidoreductase (WWOX) are two of the most common down-regulated genes in many cancers located on chromosome 3p14.2 and 16q23.3-24.1 respectively. The aim of the current study was to assess the effect of TSA on these genes expression, cell growth, and apoptosis in HCC WCH 17 cell. The cells were seeded and treated with TSA at different times. Then, MTT assay, flow cytometry, and qRT-PCR were achieved to determine viability, apoptosis and gene expression respectively. Cell growth was significantly inhibited, 92 to 36% after 24 h, 86 to 28% after 48 h, and 78 to 24% after 72 h. The results of flow cytometry confirmed that TSA increased apoptosis compared to the control group, the apoptosis percentage increased to 12%, 16%, and 18% in comparison to control groups (2%). Significant up-regulation of the genes was observed in all treated groups. We concluded that re-expression of silenced WWOX and FHIT genes could be achieved by TSA resulting in cell growth inhibition and apoptosis induction in WCH 17 cell.


Assuntos
Apoptose/fisiologia , Carcinoma Hepatocelular/patologia , Oxidorredutase com Domínios WW , Crescimento/fisiologia , Cromossomos/classificação , Citometria de Fluxo/instrumentação , Neoplasias/classificação
6.
Int J Parasitol ; 50(12): 1011-1022, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32822677

RESUMO

Epigenetic mechanisms such as histone acetylation and deacetylation participate in regulation of the genes involved in encystation of Entamoeba invadens. However, the histones and target residues involved, and whether the acetylation and deacetylation of the histones leads to the regulation of gene expression associated with the encystation of this parasite, remain unknown. In this study, we found that E. invadens histone H4 is acetylated in both stages of the parasite and is more highly acetylated during the trophozoite stage than in the cyst. Histone hyperacetylation induced by Trichostatin A negatively affects the encystation of E. invadens, and this inhibition is associated with the downregulation of the expression of genes implicated in the synthesis of chitin, polyamines, gamma-aminobutyric acid pathways and cyst wall proteins, all of which are important in the formation of cysts. Finally, in silico analysis and activity assays suggest that a class I histone deacetylase (EiHDAC3) could be involved in control of the expression of a subset of genes that are important in several pathways during encystation. Therefore, the identification of enzymes that acetylate and/or deacetylate histones that control encystation in E. invadens could be a promising therapeutic target for preventing transmission of other amoebic parasites such as E. histolytica, the causative agent of amoebiasis in humans.


Assuntos
Entamoeba , Histona Desacetilases/metabolismo , Animais , Quitina/metabolismo , Entamoeba/enzimologia , Humanos , Processamento de Proteína Pós-Traducional , Trofozoítos/enzimologia
7.
Am J Physiol Cell Physiol ; 318(2): C282-C288, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747316

RESUMO

The pedunculopontine nucleus (PPN) is part of the reticular activating system (RAS) in charge of arousal and rapid eye movement sleep. The presence of high-frequency membrane oscillations in the gamma-band range in the PPN has been extensively demonstrated both in vivo and in vitro. Our group previously described histone deacetylation (HDAC) inhibition in vitro induced protein changes in F-actin cytoskeleton and intracellular Ca2+ concentration regulation proteins in the PPN. Here, we present evidence that supports the presence of a fine balance between HDAC function and calcium calmodulin kinase II-F-actin interactions in the PPN. We modified F-actin polymerization in vitro by using jasplakinolide (1 µM, a promoter of F-actin stabilization), or latrunculin-B (1 µM, an inhibitor of actin polymerization). Our results showed that shifting the balance in either direction significantly reduced PPN gamma oscillation as well as voltage-dependent calcium currents.


Assuntos
Actinas/metabolismo , Epigênese Genética/fisiologia , Neurônios/metabolismo , Núcleo Tegmental Pedunculopontino/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Epigênese Genética/genética , Feminino , Masculino , Potenciais da Membrana/fisiologia , Ratos , Ratos Sprague-Dawley
8.
Photodiagnosis Photodyn Ther ; 29: 101583, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31731064

RESUMO

Cryptococcosis is a disseminated infection caused mainly by C. neoformans and C. gattii. Limitations for the treatment involve the selection of isolates resistant to conventional antifungal drugs, prolonged treatment time and drugs side effects. This study evaluated the combined effect of histone deacetylase inhibitors (HDACi) and photodynamic therapy (PDT) on the growth of C. neoformans and C. gattii in vitro. Results showed that PDT inhibited yeasts proliferation and enhanced the HDACi-mediated cell viability impairment in Cryptococcus spp.


Assuntos
Cryptococcus/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Indóis/farmacologia , Compostos Organometálicos/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Ciclo Celular/efeitos dos fármacos , Humanos
9.
Int J Biochem Cell Biol ; 113: 8-16, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31146004

RESUMO

Sarco(endo)plasmic reticulum Ca2+-ATPases (SERCA) expression is reduced or absent in several types of cancer and cancer cell lines; however, their expression and regulation in hepatocellular carcinoma (HCC) are unknown. Histone deacetylase inhibitors (HDACi) increase SERCA3 mRNA expression in gastric and breast cancer cell lines by increasing H3K9ac and binding of Sp1 and Sp3 transcription factors to the promoter; however, the molecular mechanism is not fully understood. Our results show that ATP2A3 (SERCA3) gene expression is decreased in human HCC samples and rat HCC AS-30D cells compared to normal liver, and HCC patients with high expression of ATP2A3 had longer overall survival than those with low expression. Sodium butyrate (NaB) and trichostatin A (TSA) increase SERCA3 mRNA expression in AS-30D cells, whereas SERCA2b mRNA expression did not change. NaB and TSA increase H3K9ac and H3K27ac in two ATP2A3 promoter regions. Besides, NaB treated cells increased Sp1 and Sp3 occupancy at ATP2A3 promoter; whereas TSA treated cells showed increased p300 levels at ATP2A3 promoter. Inhibition of p300 by C646, a specific inhibitor, mitigates SERCA3 mRNA induction by TSA, and reduces more than 70% of basal SERCA3 mRNA expression, suggesting that p300 is important for ATP2A3 gene transcription in AS-30D cells. Moreover, inhibition of p300 decreases H3K9ac in TSA treated cells. Our results provide evidence of decreased SERCA3 expression in human HCC samples and rat AS-30D cells and a correlation of SERCA3 expression with overall survival in HCC patients. Also, reveal new insights in SERCA3 transcriptional regulation mediated by HDACi.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteína p300 Associada a E1A/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Hepáticas/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Animais , Ácido Butírico/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Expressão Gênica/efeitos dos fármacos , Histonas/genética , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Regiões Promotoras Genéticas , Ratos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Células Tumorais Cultivadas
10.
Artigo em Inglês | MEDLINE | ID: mdl-30897528

RESUMO

Cestode parasites cause neglected diseases, such as echinococcosis and cysticercosis, which represent a significant problem in human and animal health. Benzimidazoles and praziquantel are the only available drugs for chemotherapy and it is therefore important to identify new alternative drugs against cestode parasites. Histone deacetylases (HDACs) are validated drug targets for the treatment of cancer and other diseases, including neglected diseases. However, knowledge of HDACs in cestodes is very scarce. In this work, we investigated cestode HDACs as potential drug targets to develop new therapies against neglected diseases caused by cestodes. Here we showed the full repertoire of HDAC coding genes in several members of the class Cestoda. Between 6 and 7 zinc-dependent HDAC coding genes were identified in the genomes of species from Echinococcus, Taenia, Mesocestoides and Hymenolepis genera. We classified them as Class I and II HDACs and analyzed their transcriptional expression levels throughout developmental stages of Echinococcus spp. We confirmed for the first time the complete HDAC8 nucleotide sequences from Echinococcus canadensis G7 and Mesocestoides corti. Homology models for these proteins showed particular structural features which differentiate them from HDAC8 from Homo sapiens. Furthermore, we showed that Trichostatin A (TSA), a pan-HDAC inhibitor, decreases the viability of M. corti, alters its tegument and morphology and produces an increment of the total amount of acetylated proteins, including acetylated histone H4. These results suggest that HDAC from cestodes are functional and might play important roles on survival and development. The particular structural features observed in cestode HDAC8 proteins suggest that these enzymes could be selectively targeted. This report provides the basis for further studies on cestode HDAC enzymes and for discovery of new HDAC inhibitors for the treatment of neglected diseases caused by cestode parasites.


Assuntos
Cestoides/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/parasitologia , Animais , Cestoides/enzimologia , Infecções por Cestoides/tratamento farmacológico , Feminino , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Wistar
11.
Parasitology ; 146(4): 543-552, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30421693

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease, is a public health concern in Latin America. Epigenetic events, such as histone acetylation, affect DNA topology, replication and gene expression. Histone deacetylases (HDACs) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. HDAC inhibitors, like trichostatin A (TSA), inhibit tumour cell proliferation and promotes ultrastructural modifications. In the present study, TSA effects on cell proliferation, viability, cell cycle and ultrastructure were evaluated, as well as on histone acetylation and tubulin expression of the T. cruzi epimastigote form. Protozoa proliferation and viability were reduced after treatment with TSA. Quantitative proteomic analyses revealed an increase in histone acetylation after 72 h of TSA treatment. Surprisingly, results obtained by different microscopy methodologies indicate that TSA does not affect chromatin compaction, but alters microtubule cytoskeleton dynamics and impair kDNA segregation, generating polynucleated cells with atypical morphology. Confocal fluorescence microscopy and flow cytometry assays indicated that treated cell microtubules were more intensely acetylated. Increases in tubulin acetylation may be directly related to the higher number of parasites in the G2/M phase after TSA treatment. Taken together, these results suggest that deacetylase inhibitors represent excellent tools for understanding trypanosomatid cell biology.


Assuntos
Divisão Celular/fisiologia , Citoesqueleto/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Histonas/química , Ácidos Hidroxâmicos/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Tubulina (Proteína)/química , Acetilação , Microtúbulos/fisiologia
12.
Parasitology, v. 146, n. 4, p. 543-552, abr. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2708

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease, is a public health concern in Latin America. Epigenetic events, such as histone acetylation, affect DNA topology, replication and gene expression. Histone deacetylases (HDACs) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. HDAC inhibitors, like trichostatin A (TSA), inhibit tumour cell proliferation and promotes ultrastructural modifications. In the present study, TSA effects on cell proliferation, viability, cell cycle and ultrastructure were evaluated, as well as on histone acetylation and tubulin expression of the T. cruzi epimastigote form. Protozoa proliferation and viability were reduced after treatment with TSA. Quantitative proteomic analyses revealed an increase in histone acetylation after 72 h of TSA treatment. Surprisingly, results obtained by different microscopy methodologies indicate that TSA does not affect chromatin compaction, but alters microtubule cytoskeleton dynamics and impair kDNA segregation, generating polynucleated cells with atypical morphology. Confocal fluorescence microscopy and flow cytometry assays indicated that treated cell microtubules were more intensely acetylated. Increases in tubulin acetylation may be directly related to the higher number of parasites in the G2/M phase after TSA treatment. Taken together, these results suggest that deacetylase inhibitors represent excellent tools for understanding trypanosomatid cell biology.

13.
J Cell Biochem ; 118(4): 869-877, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27748538

RESUMO

Different from genetic alterations, the reversible nature of epigenetic modifications provides an interesting opportunity for the development of clinically relevant therapeutics in different tumors. In this study, we aimed to screen and validate candidate genes regulated by the epigenetic marker associated with transcriptional activation, histone acetylation, in gastric cancer (GC). We first compared gene expression profile of trichostatin A-treated and control GC cell lines using microarray assay. Among the 55 differentially expressed genes identified in this analysis, we chose the up-regulated genes BMP8B and BAMBI for further analyses, that included mRNA and histone acetylation quantification in paired GC and nontumor tissue samples. BMP8B expression was reduced in GC compared to nontumor samples (P < 0.01). In addition, reduced BMP8B expression was associated with poorly differentiated GC (P = 0.02). No differences or histopathological associations were identified concerning BAMBI expression. Furthermore, acetylated H3K9 and H4K16 levels at BMP8B were increased in GC compared to nontumors (P < 0.05). However, reduced levels of acetylated H3K9 and H4K16 were associated with poorly differentiated GC (P < 0.05). Reduced levels of acetylated H3K9 was also associated with diffuse-type histological GC (P < 0.05). Notably, reduced BMP8B mRNA and acetylated H4K16 levels were positively correlated in poorly differentiated GC (P < 0.05). Our study demonstrated that BMP8B seems to be a tumor suppressor gene regulated by H4K16 acetylation in poorly differentiated GC. Therefore, BMP8B may be a potential target for TSA-based therapies in this GC sample subset. J. Cell. Biochem. 118: 869-877, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Genes Supressores de Tumor , Histonas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Acetilação , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adulto , Diferenciação Celular/genética , Linhagem Celular Tumoral , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/farmacologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Neoplasias Gástricas/tratamento farmacológico
14.
Neurobiol Learn Mem ; 134 Pt B: 328-38, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27544851

RESUMO

Acute stress induced before spatial training impairs memory consolidation. Although non-epigenetic underpinning of such effect has been described, the epigenetic mechanisms involved have not yet been studied. Since spatial training and intense stress have opposite effects on histone acetylation balance, it is conceivable that disruption of such balance may underlie acute stress-induced spatial memory consolidation impairment and that inhibiting histone deacetylases prevents such effect. Trichostatin-A (TSA, a histone deacetylase inhibitor) was used to test its effectiveness in preventing stress' deleterious effect on memory. Male Wistar rats were trained in a spatial task in the Barnes maze; 1-h movement restraint was applied to half of them before training. Immediately after training, stressed and non-stressed animals were randomly assigned to receive either TSA (1mg/kg) or vehicle intraperitoneal injection. Twenty-four hours after training, long-term spatial memory was tested; plasma and brain tissue were collected immediately after the memory test to evaluate corticosterone levels and histone H3 acetylation in several brain areas. Stressed animals receiving vehicle displayed memory impairment, increased plasma corticosterone levels and markedly reduced histone H3 acetylation in prelimbic cortex and hippocampus. Such effects did not occur in stressed animals treated with TSA. The aforementioned results support the hypothesis that acute stress induced-memory impairment is related to histone deacetylation.


Assuntos
Corticosterona/metabolismo , Hipocampo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Transtornos da Memória , Córtex Pré-Frontal/metabolismo , Memória Espacial , Estresse Psicológico , Acetilação , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Epigênese Genética/fisiologia , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Ácidos Hidroxâmicos/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Ratos , Ratos Wistar , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Estresse Psicológico/prevenção & controle
15.
Pharmacol Res ; 109: 64-73, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26774789

RESUMO

Stress is an adaptive response to demands of the environment and thus essential for survival. Exposure to stress during the first years of life has been shown to have profound effects on the growth and development of an adult individual. There are evidences demonstrating that stressful experiences during gestation or in early life can lead to enhanced susceptibility to mental disorders. Early-life stress triggers hypothalamic-pituitary-adrenocortical (HPA) axis activation and the associated neurochemical reactions following glucocorticoid release are accompanied by a rapid physiological response. An excessive response may affect the developing brain resulting in neurobehavioral and neurochemical changes later in life. This article reviews the data from experimental studies aimed to investigate hormonal, functional, molecular and epigenetic mechanisms involved in the stress response during early-life programming. We think these studies might prove useful for the identification of novel pharmacological targets for more effective treatments of mental disorders.


Assuntos
Estresse Psicológico/genética , Animais , Epigênese Genética , Feminino , Humanos , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Gravidez , Efeitos Tardios da Exposição Pré-Natal
16.
Virulence ; 6(6): 535-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26151486

RESUMO

The interaction of pathogens and its hosts causes a drastic change in the transcriptional landscape in both cells. Among the several mechanisms of gene regulation, transcriptional initiation is probably the main point. In such scenario, the access of transcriptional machinery to promoter is highly regulated by post-translational modification of histones, such as acetylation, phosphorylation and others. Inhibition of histone deacetylases is able to reduce fungal pathogens fitness during infection and, therefore, is currently being considered for the development of new antifungal therapy strategies.


Assuntos
Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Fungos/enzimologia , Regulação Fúngica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Descoberta de Drogas/tendências , Humanos
17.
Virulence ; 6(6): 618-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26103530

RESUMO

Cryptococcus neoformans undergoes phenotypical changes during host infection in order to promote persistence and survival. Studies have demonstrated that such adaptations require alterations in gene transcription networks by distinct mechanisms. Drugs such as the histone deacetylases inhibitors (HDACi) Sodium Butyrate (NaBut) and Trichostatin A (TSA) can alter the chromatin conformation and have been used to modulate epigenetic states in the treatment of diseases such as cancer. In this work, we have studied the effect of NaBut and TSA on the expression of C. neoformans major virulence phenotypes and on the survival rate of an animal model infected with drugs-treated yeasts. Both drugs affected fungal growth at 37°C more intensely than at 30°C; nonetheless, drugs did not affect cell viability at the concentrations we studied. HDACi also provoked the reduction of the fungal capsule expansion. Phospholipases enzyme activity decreased; mating process and melanin synthesis were also affected by both inhibitors. NaBut led to an increase in the population of cells in G2/M. Treated yeast cells, which were washed in order to remove the drugs from the culture medium prior to the inoculation in the Galleria mellonela infection model, did not cause significant difference at the host survival curve when compared to non-treated cells. Overall, NaBut effects on the impairment of C. neoformans main virulence factors were more intense and stable than the TSA effects.


Assuntos
Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/fisiologia , Inibidores de Histona Desacetilases/metabolismo , Animais , Ácido Butírico/metabolismo , Divisão Celular/efeitos dos fármacos , Cryptococcus neoformans/crescimento & desenvolvimento , Modelos Animais de Doenças , Cápsulas Fúngicas/efeitos dos fármacos , Cápsulas Fúngicas/metabolismo , Ácidos Hidroxâmicos/metabolismo , Lepidópteros , Melaninas/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Fenótipo , Fosfolipases/análise , Análise de Sobrevida , Temperatura , Virulência/efeitos dos fármacos
18.
J Cell Biochem ; 116(5): 797-808, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25510910

RESUMO

Tumor cells display different bioenergetic profiles when compared to normal cells. In the present work we showed metabolic reprogramming by means of inhibitors of histone deacetylase (HDACis), sodium butyrate and trichostatin A in breast cancer cells representing different stages of aggressiveness and metabolic profile. When testing the effect of NaB and TSA on viability of cells, it was shown that non-tumorigenic MCF-10A cells were less affected by increasing doses of the drugs than the tumorigenic, hormone dependent, tightly cohesive MCF-7, T-47D and the highly metastatic triple-negative MDA-MB 231 cells. T-47D cells were the most sensitive to treatment with both, NaB and TSA. Experiments measuring anchorage- independent growth of tumor cells showed that MCF-7, T-47D, and MDA-MB-231 cells were equally sensitive to the treatment with NaB. The NaB induced an attenuation of glycolysis, reflected by a decrease in lactate release in MCF-7 and T47D lines. Pyruvate kinase activity was significantly enhanced by NaB in MDA-MB-231 cells only. In contrast, the inhibitor enhanced lactate dehydrogenase activity specifically in T-47 D cells. Glucose-6-phosphate dehydrogenase activity was shown to be differentially modulated by NaB in the cell lines investigated: the enzyme was inhibited in MCF-7 cells, whereas in T-47D and MDA-MB-231 cells, G6PDH was activated. NaB and TSA were able to significantly increase the oxygen consumption by MDA-MB-231 and T-47D cells. Collectively the results show that epigenetic changes associated to acetylation of proteins in general affect the energy metabolism in all cancer cell lines and that mitochondria may occupy a central role in metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Ácido Butírico/metabolismo , Metabolismo Energético , Inibidores de Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/metabolismo , Linhagem Celular Tumoral , Glicólise , Humanos , Redes e Vias Metabólicas , Oxirredução
19.
FEBS Open Bio ; 4: 96-104, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24490130

RESUMO

Cisplatin-based chemotherapy is the standard treatment of choice for head and neck squamous cell carcinoma (HNSCC). The efficiency of platinum-based therapies is directly influenced by the development of tumor resistance. Multiple signaling pathways have been linked to tumor resistance, including activation of nuclear factor kappa B (NFκB). We explore a novel mechanism by which NFκB drives HNSCC resistance through histone modifications. Post-translational modification of histones alters chromatin structure, facilitating the binding of nuclear factors that mediate DNA repair, transcription, and other processes. We found that chemoresistant HNSCC cells with active NFκB signaling respond to chemotherapy by reducing nuclear BRCA1 levels and by promoting histone deacetylation (chromatin compaction). Activation of this molecular signature resulted in impaired DNA damage repair, prolonged accumulation of histone γH2AX and increased genomic instability. We found that pharmacological induction of histone acetylation using HDAC inhibitors prevented NFκB-induced cisplatin resistance. Furthermore, silencing NFκB in HNSCC induced acetylation of tumor histones, resulting in reduced chemoresistance and increased cytotoxicity following cisplatin treatment. Collectively, these findings suggest that epigenetic modifications of HNSCC resulting from NFκB-induced histone modifications constitute a novel molecular mechanism responsible for chemoresistance in HNSCC. Therefore, targeted inhibition of HDAC may be used as a viable therapeutic strategy for disrupting tumor resistance caused by NFκB.

20.
Int J Dev Neurosci ; 31(6): 359-69, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23665156

RESUMO

Learning and memory are basic functions of the brain that allowed human evolution. It is well accepted that during learning and memory formation the dynamic establishment of new active synaptic connections is crucial. Persistent synaptic activation leads to molecular events that include increased release of neurotransmitters, increased expression of receptors on the postsynaptic neuron, thus creating a positive feedback that results in the activation of distinct signaling pathways that temporally and permanently alter specific patterns of gene expression. However, the epigenetic changes that allow the establishment of long term genetic programs that control learning and memory are not completely understood. Even less is known regarding the signaling events triggered by synaptic activity that regulate these epigenetic marks. Here we review the current understanding of the molecular mechanisms controlling activity-dependent gene transcription leading synaptic plasticity and memory formation. We describe how Ca(2+) entry through N-methyl-d-aspartate-type glutamate neurotransmitter receptors result in the activation of specific signaling pathways leading to changes in gene expression, giving special emphasis to the recent data pointing out different epigenetic mechanisms (histone acetylation, methylation and phosphorylation as well as DNA methylation and hydroxymethylation) underlying learning and memory.


Assuntos
Epigênese Genética/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Transcrição Gênica , Animais , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA