Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
J Fungi (Basel) ; 10(7)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39057328

RESUMO

Nanocompounds are widely used in many fields such as environmental, medicine, or agriculture. Nowadays, these nanocompounds are mainly synthesized by chemical methods, causing environmental pollution and potential health problems. Thus, microorganisms have been investigated as potential nanoparticle green biosynthesizers. The main research is focused on the synthesis of nanoparticles (NPs) using algae, yeast, bacteria, and fungi. Among them, fungi have been the most used, due to their simple and effective mycosynthesis. Fungi as well as other organisms involved in green synthesis of NPs use their secondary metabolites (SMs) to mediate and catalyze the reactions to produce metal nanoparticles (MNPs) as well as being able to act as capping agents producing different physicochemical characteristics and biological activities in the MNPs. Among the various fungi used for mycosynthesis are Trichoderma species, which mediate the production of Ag, Cu, CuO, Zn, ZnO, and other MNPs. Here, we review the main SMs from Trichoderma that have been reported or suggested to contribute to synthesize or act as capping agents and their applications, as well as present the main challenges faced by this type of synthesis.

2.
Environ Pollut ; 357: 124431, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38925214

RESUMO

Soil contamination by hydrocarbons is a problem that causes severe damage to the environment and public health. Technologies such as bioremediation using native microbial species represent a promising and environmentally friendly alternative for decontamination. This study aimed to isolate indigenous fungi species from the State of Rio de Janeiro, Brazil and evaluate their diesel degrading capacity in soils contaminated with crude oil. Seven filamentous fungi were isolated after enrichment cultivation from soils collected from contaminated sites and subjected to growth analysis on diesel nutrient media. Two fungal species were pre-selected and identified by morphological genus analysis and molecular techniques as Trichoderma asperellum and Penicillium pedernalense. The microdilution test showed that T. asperellum presented better fungal growth in high diesel concentrations than P. pedernalense. In addition, T. asperellum was able to degrade 41 and 54% of the total petroleum hydrocarbon (TPH) content present in soil artificially contaminated with diesel (10 g/kg of soil) in 7 and 14 days of incubation, respectively. In higher diesel concentration (1000 g of diesel/kg of soil) the TPH degradation reached 26%, 45%, and 48%, in 9, 16, and 30 d, respectively. The results demonstrated that the selected species was suitable for diesel degradation. We can also conclude that the isolation and selection process proposed in this work was successful and represents a simple alternative for obtaining native species with hydrocarbon degradation capacity, for use in the bioremediation process in the recovery of contaminated areas in an ecologically acceptable way.


Assuntos
Biodegradação Ambiental , Fungos , Gasolina , Hidrocarbonetos , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Brasil , Hidrocarbonetos/metabolismo , Fungos/metabolismo , Penicillium/metabolismo , Solo/química , Petróleo/metabolismo , Trichoderma/metabolismo
3.
J Fungi (Basel) ; 10(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38921393

RESUMO

Trichoderma erinaceum is a filamentous fungus that was isolated from decaying sugarcane straw at a Brazilian ethanol biorefinery. This fungus shows potential as a source of plant cell wall-degrading enzymes (PCWDEs). In this study, we conducted a comprehensive multiomics investigation of T. erinaceum to gain insights into its enzymatic capabilities and genetic makeup. Firstly, we performed genome sequencing and assembly, which resulted in the identification of 10,942 genes in the T. erinaceum genome. We then conducted transcriptomics and secretome analyses to map the gene expression patterns and identify the enzymes produced by T. erinaceum in the presence of different substrates such as glucose, microcrystalline cellulose, pretreated sugarcane straw, and pretreated energy cane bagasse. Our analyses revealed that T. erinaceum highly expresses genes directly related to lignocellulose degradation when grown on pretreated energy cane and sugarcane substrates. Furthermore, our secretome analysis identified 35 carbohydrate-active enzymes, primarily PCWDEs. To further explore the enzymatic capabilities of T. erinaceum, we selected a ß-glucosidase from the secretome data for recombinant production in a fungal strain. The recombinant enzyme demonstrated superior performance in degrading cellobiose and laminaribiose compared to a well-known enzyme derived from Trichoderma reesei. Overall, this comprehensive study provides valuable insights into both the genetic patterns of T. erinaceum and its potential for lignocellulose degradation and enzyme production. The obtained genomic data can serve as an important resource for future genetic engineering efforts aimed at optimizing enzyme production from this fungus.

4.
Front Pharmacol ; 15: 1398135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751785

RESUMO

The discovery of new therapeutic alternatives for cancer treatment is essential for improving efficacy and specificity, overcoming resistance, and enabling a more personalized approach for each patient. We investigated the antitumor activity of the crude ethanolic extract of the fungus Trichoderma asperelloides (ExtTa) and its interaction with chemotherapeutic drugs. It was observed, by MTT cytotoxicity assay, that ExtTa significantly reduced cell viability in breast adenocarcinoma, glioblastoma, lung carcinoma, melanoma, colorectal carcinoma, and sarcomas cell lines. The highest efficacy and selectivity of ExtTa were found against glioblastoma T98G and colorectal HCT116 cell lines. ExtTa is approximately four times more cytotoxic to those tumor cells than to non-cancer cell lines. A synergistic effect between ExtTa and doxorubicin was found in the treatment of osteosarcoma Saos-2 cells, as well as with 5-fluorouracil in the treatment of HCT116 colorectal carcinoma cells using CompuSyn software. Our data unravel the presence of bioactive compounds with cytotoxic effects against cancer cells present in T. asperelloides ethanolic crude extract, with the potential for developing novel anticancer agents.

5.
Antonie Van Leeuwenhoek ; 117(1): 64, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565745

RESUMO

Trichoderma harzianum is a filamentous fungus that can act as a mycoparasite, saprophyte, or a plant symbiotic. It is widely used as a biological control agent against phytopathogenic fungi and can also be used for plant growth promotion and biofortification. Interaction between T. harzianum and phytopathogenic fungi involves mycoparasitism, competition, and antibiosis. Extracellular vesicles (EVs) have been described as presenting a central role in mechanisms of communication and interaction among fungus and their hosts. In this study, we characterized extracellular vesicles of T. harzianum produced during growth in the presence of glucose or S. sclerotiorum mycelia. A set of vesicular proteins was identified using proteomic approach, mainly presenting predicted signal peptides.


Assuntos
Vesículas Extracelulares , Hypocreales , Trichoderma , Trichoderma/metabolismo , Proteômica
6.
World J Microbiol Biotechnol ; 40(5): 137, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504029

RESUMO

The present study evaluated the performance of the fungus Trichoderma reesei to tolerate and biodegrade the herbicide diuron in its agrochemical presentation in agar plates, liquid culture, and solid-state fermentation. The tolerance of T. reesei to diuron was characterized through a non-competitive inhibition model of the fungal radial growth on the PDA agar plate and growth in liquid culture with glucose and ammonium nitrate, showing a higher tolerance to diuron on the PDA agar plate (inhibition constant 98.63 mg L-1) than in liquid culture (inhibition constant 39.4 mg L-1). Diuron biodegradation by T. reesei was characterized through model inhibition by the substrate on agar plate and liquid culture. In liquid culture, the fungus biotransformed diuron into 3,4-dichloroaniline using the amide group from the diuron structure as a carbon and nitrogen source, yielding 0.154 mg of biomass per mg of diuron. A mixture of barley straw and agrolite was used as the support and substrate for solid-state fermentation. The diuron removal percentage in solid-state fermentation was fitted by non-multiple linear regression to a parabolic surface response model and reached the higher removal (97.26%) with a specific aeration rate of 1.0 vkgm and inoculum of 2.6 × 108 spores g-1. The diuron removal in solid-state fermentation by sorption on barley straw and agrolite was discarded compared to the removal magnitude of the biosorption and biodegradation mechanisms of Trichoderma reesei. The findings in this work about the tolerance and capability of Trichoderma reesei to remove diuron in liquid and solid culture media demonstrate the potential of the fungus to be implemented in bioremediation technologies of herbicide-polluted sites.


Assuntos
Celulase , Herbicidas , Hypocreales , Trichoderma , Fermentação , Trichoderma/metabolismo , Diurona/metabolismo , Ágar/metabolismo , Herbicidas/metabolismo , Biodegradação Ambiental , Celulase/metabolismo
7.
Microb Cell Fact ; 23(1): 51, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355518

RESUMO

BACKGROUND: In hematologic cancers, including leukemia, cells depend on amino acids for rapid growth. Anti-metabolites that prevent their synthesis or promote their degradation are considered potential cancer treatment agents. Amino acid deprivation triggers proliferation inhibition, autophagy, and programmed cell death. L-lysine, an essential amino acid, is required for tumor growth and has been investigated for its potential as a target for cancer treatment. L-lysine α-oxidase, a flavoenzyme that degrades L-lysine, has been studied for its ability to induce apoptosis and prevent cancer cell proliferation. In this study, we describe the use of L-lysine α-oxidase (LO) from the filamentous fungus Trichoderma harzianum for cancer treatment. RESULTS: The study identified and characterized a novel LO from T. harzianum and demonstrated that the recombinant protein (rLO) has potent and selective cytotoxic effects on leukemic cells by triggering the apoptotic cascade through mitochondrial dysfunction. CONCLUSIONS: The results support future translational studies using the recombinant LO as a potential drug for the treatment of leukemia.


Assuntos
Hypocreales , Leucemia , Neoplasias , Trichoderma , Humanos , Lisina , Apoptose , Leucemia/tratamento farmacológico , Necrose
8.
Braz J Microbiol ; 55(2): 1679-1691, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38393617

RESUMO

Fungal plant pathogens are responsible for serious losses in many economically important crop species worldwide. Due to the use of fungicides and the fungi genome plasticity, multi-drug resistant strains are emerging as a new generation of pathogens, causing an expansive range of superficial and systemic plant infections, or new opportunistic fungal pathogens for humans. The group of antagonistic fungi Trichoderma spp. has been widely used to enhance plant growth and for the control of different pathogens affecting crops. Although Neurospora crassa is not a mycoparasitic fungus, its secretion of secondary metabolites with antimicrobial activity has been described. In this work, the effect of crude extract of the monoculture of Trichoderma asperellum T8a or the co-culture with N. crassa as an inhibitory treatment against the fungal pathogens Botrytis cinerea and Fusarium solani was evaluated. The findings demonstrate that the secondary metabolites contained in the T. asperellum crude extract have a clear fungistatic activity against B. cinerea and F. solani. Interestingly, this fungistatic activity highly increases when T. asperellum is co-cultivated with the non-pathogenic fungus N. crassa. Moreover, the co-culture crude extract also showed antifungal activity on post-harvest fruits, and no toxic effects on Murine fibroblast L929 (CCL-1) and murine macrophages RAW 264.7 (TIB-71) were observed. All these results together are solid evidence of the potential of the co-culture crude extract of T. asperellum and N. crassa, as an antifungal agent against phytopathogenic fungi, or post-harvest fruits during the transportation or commercialization time.


Assuntos
Botrytis , Técnicas de Cocultura , Frutas , Fusarium , Trichoderma , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Frutas/microbiologia , Frutas/química , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Trichoderma/metabolismo , Trichoderma/genética , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Neurospora crassa/efeitos dos fármacos , Neurospora crassa/metabolismo , Células RAW 264.7 , Misturas Complexas/farmacologia , Misturas Complexas/química
9.
Braz J Microbiol ; 55(1): 543-556, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38261262

RESUMO

Endophytic fungi have been recognized as a valuable source for the production of biologically active compounds with potential applications in various domains. This study aimed to isolate endophytic fungi from Ampelopsis japonica (Thunb.) Makino and assess their anti-MRSA activity. Meanwhile, chromatographic separation techniques were applied to analyze the constituents of endophytic fungal secondary metabolites. The isolate BLR24, which exhibited strong inhibition activity against MRSA, was identified as Trichoderma virens based on morphological characteristics and ITS sequence analyses. The ethyl acetate extract of BLR24 (EA-BLR24) showed good anti-MRSA activity with the MIC and MBC values of 25 µg/mL and 50 µg/mL, separately. The inhibition of biofilm formation was up to 34.67% under MIC concentration treatment. Meanwhile, EA-BLR24 could significantly reduce the expression of biofilm-related genes (icaA, sarA, and agrA) of MRSA. Based on LC-MS/MS analysis, twenty compounds in EA-BLR24 could be annotated using the GNPS platform, mainly diketopiperazines. The anti-MRSA compound (Fr.1.1) was obtained from EA-BLR24 by bioassay-guided fractionation and determined as gliotoxin. The results indicated that endophytic Trichoderma virens BLR24 isolated from the medical plant A. japonica roots could be a promising source of natural anti-MRSA agents. Endophytic fungal secondary metabolites are abundant in biologically active compounds. Endophytic fungi from medicinal plants could be a source yielding bioactive metabolites of pharmaceutical importance.


Assuntos
Ampelopsis , Staphylococcus aureus Resistente à Meticilina , Plantas Medicinais , Trichoderma , Cromatografia Líquida , Espectrometria de Massas em Tandem , Endófitos
10.
Microb Cell Fact ; 23(1): 22, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229067

RESUMO

BACKGROUND: Trichoderma reesei is an organism extensively used in the bioethanol industry, owing to its capability to produce enzymes capable of breaking down holocellulose into simple sugars. The uptake of carbohydrates generated from cellulose breakdown is crucial to induce the signaling cascade that triggers cellulase production. However, the sugar transporters involved in this process in T. reesei remain poorly identified and characterized. RESULTS: To address this gap, this study used temporal membrane proteomics analysis to identify five known and nine putative sugar transporters that may be involved in cellulose degradation by T. reesei. Docking analysis pointed out potential ligands for the putative sugar transporter Tr44175. Further functional validation of this transporter was carried out in Saccharomyces cerevisiae. The results showed that Tr44175 transports a variety of sugar molecules, including cellobiose, cellotriose, cellotetraose, and sophorose. CONCLUSION: This study has unveiled a transporter Tr44175 capable of transporting cellobiose, cellotriose, cellotetraose, and sophorose. Our study represents the first inventory of T. reesei sugar transportome once exposed to cellulose, offering promising potential targets for strain engineering in the context of bioethanol production.


Assuntos
Celulase , Glucanos , Hypocreales , Trichoderma , Celobiose/metabolismo , Proteoma/metabolismo , Proteínas de Membrana/metabolismo , Celulose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Celulase/metabolismo , Açúcares/metabolismo , Oligossacarídeos/metabolismo , Trichoderma/metabolismo
11.
Biosci. j. (Online) ; 40: e40003, 2024.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1567621

RESUMO

This study evaluated the initial development of paricá (Schizolobium parahyba var. amazonicum) seedlings under different nitrogen rates with the application of Trichoderma spp., using a randomized complete block design in a 4x5 factorial scheme (strains and rates) with seven replications. The evaluated traits were plant height, stem diameter, leaf and stem fresh weights, leaf and stem dry weights, and aerial part dry and fresh weights. Trichoderma spp. strains did not satisfactorily promote paricá seedlings (Schizolobium parahyba var. amazonicum) under high nitrogen rates. However, the Trichoderma harzianum IBLF 006 WP strain was efficient only under low nitrogen availability.

12.
J Fungi (Basel) ; 9(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132774

RESUMO

The fungus Trichoderma reesei is an essential producer of enzymes that degrade lignocellulosic biomass to produce value-added bioproducts. The cellulolytic system of T. reesei is controlled by several transcription factors (TFs) that efficiently regulate the production of these enzymes. Recently, a new TF named Azf1 was identified as a positive regulator of cellulase expression. Here, we investigated novel regulatory functions of Azf1 by its overexpression. In the mutant strain OEazf1, overexpression of azf1 was achieved under both repression and induction conditions. Although azf1 was more abundant in transcript and protein, overexpression of this TF did not activate transcription of the cellulase gene in the presence of the repressor glucose, suggesting that Azf1 may be subject to posttranslational regulation. In cellulose, the expression of swo, encoding the accessory protein swollenin, and the ß-glucosidases cel1a, cel1b, cel3b, and cel3g increases in the early stages of cultivation. The increased production of these ß-glucosidases increases the hydrolysis rate of cellobiose and sophorose, which activates carbon catabolite repression (CCR) and causes repression of cellulase genes and the regulator Xyr1 in the later stages of cultivation. Moreover, overexpression of azf1 led to increased cellulase activity in T. reesei during long-term cultivation in cellulose and sugarcane bagasse. Our results provide new insights into the mechanisms regulating Azf1 and novel genes that are important targets of this TF. This work contributes to a better understanding of the complex mechanisms regulating cellulase expression in T. reesei. It will contribute to the development of strains with higher production of these essential enzymes.

13.
Microbiol Spectr ; 11(6): e0260723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37943049

RESUMO

IMPORTANCE: In addition to being considered a biocontrol agent, the fungus Trichoderma atroviride is a relevant model for studying mechanisms of response to injury conserved in plants and animals that opens a new landscape in relation to regeneration and cell differentiation mechanisms. Here, we reveal the co-functionality of a lipoxygenase and a patatin-like phospholipase co-expressed in response to wounding in fungi. This pair of enzymes produces oxidized lipids that can function as signaling molecules or oxidative stress signals that, in ascomycetes, induce asexual development. Furthermore, we determined that both genes participate in the regulation of the synthesis of 13-HODE and the establishment of the physiological responses necessary for the formation of reproductive aerial mycelium ultimately leading to asexual development. Our results suggest an injury-induced pathway to produce oxylipins and uncovered physiological mechanisms regulated by LOX1 and PLP1 to induce conidiation, opening new hypotheses for the novo regeneration mechanisms of filamentous fungi.


Assuntos
Trichoderma , Animais , Trichoderma/genética , Transdução de Sinais , Micélio , Reprodução , Estresse Oxidativo , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/metabolismo
14.
Front Plant Sci ; 14: 1253741, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37828934

RESUMO

Most Trichoderma species are beneficial fungi that promote plant growth and resistance, while Fusarium genera cause several crop damages. During the plant-fungi interaction there is a competition for sugars in both lifestyles. Here we analyzed the plant growth promotion and biocontrol activity of T. asperellum against F. verticillioides and the effect of both fungi on the expression of the maize diffusional sugar transporters, the SWEETs. The biocontrol activity was done in two ways, the first was by observing the growth capacity of both fungus in a dual culture. The second one by analyzing the infection symptoms, the chlorophyl content and the transcript levels of defense genes determined by qPCR in plants with different developmental stages primed with T. asperellum conidia and challenged with F. verticillioides. In a dual culture, T. asperellum showed antagonist activity against F. verticillioides. In the primed plants a delay in the infection disease was observed, they sustained chlorophyll content even after the infection, and displayed upregulated defense-related genes. Additionally, the T. asperellum primed plants had longer stems than the nonprimed plants. SWEETs transcript levels were analyzed by qPCR in plants primed with either fungus. Both fungi affect the transcript levels of several maize sugar transporters differently. T. asperellum increases the expression of six SWEETs on leaves and two at the roots and causes a higher exudation of sucrose, glucose, and fructose at the roots. On the contrary, F. verticillioides reduces the expression of the SWEETs on the leaves, and more severely when a more aggressive strain is in the plant. Our results suggest that the plant is able to recognize the lifestyle of the fungi and respond accordingly by changing the expression of several genes, including the SWEETs, to establish a new sugar flux.

15.
Arq. bras. med. vet. zootec. (Online) ; 75(5): 981-992, Sept.-Oct. 2023. tab, graf
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1513672

RESUMO

ABSTRACT The objective was to evaluate the inoculation with Aspergillus terreus and/or Trichoderma longibrachiatum on fermentation, chemical and microbiological composition of elephant grass 'Cameroon' silage (Cenchrus purpureus). Treatments were A. terreus at 105 colony forming units (CFU)/g (AT15), T. longibrachiatum at 105 CFU/g (TL20), a mixture of both at 105 CFU/g (MIX), and a control group without inoculation (CONTR). The design was completely randomized with seven replicates. The MIX silage was most stable, while CONTR, AT15, and TL20, had lower dry matter losses. There was no effect of inoculation in the chemical composition of silages. Only MIX silage (4.40) had pH above the minimum of 4.2 for humid grass silage and above the control (4.05). Bacteria from Diplococcus genus was identified at the opening of TL20 and CONTR silages. After air exposure, the population of rods, Lactobacillus, and total lactic acid bacteria was higher in theTL20 and MIX. The inclusion of a T. longibrachiatum and A. terreus mixture increases dry mater loss and silage pH. T. longibrachiatum was more efficient in maintaining populations of total lactic acid bacteria after opening; therefore, this strain has potential as an additive for elephant grass 'Cameroon' silage.


RESUMO O objetivo foi testar a inoculação com Aspergillus terreus e Trichoderma longibrachiatum sobre a fermentação, a composição bromatológica e microbiológica de silagem de capim-elefante cultivar 'Cameroon' (Cenchrus purpureus). Os tratamentos foram A. terreus a 105 unidades formadores de colônias (UFC)/g (AT15), T. longibrachiatum a 105 UFC/g (TL20), a mistura de ambos a 105 UFC/g (MIX), cada, e um controle não inoculado (CONTR). O delineamento foi inteiramente ao acaso, com sete repetições. A silagem MIX foi mais estável após abertura, enquanto CONTR, AT15 e TL20 apresentaram menor perda de massa seca. Não houve efeito de inoculação sobre a composição bromatológica das silagens. Apenas a silagem MIX (4,40) apresentou pH acima do mínimo de 4,2 para silagem de capim úmido e superior ao controle (4,05). Bactérias do gênero Diplococcus foram identificadas na abertura das silagens TL20 e CONTR. Após exposição ao ar, a população de bastonetes, Lactobacillus e bactérias láticas totais foram maiores em TL20 e MIX. A mistura de T. longibrachiatum e A. terreus aumenta a perda de matéria seca e o pH da silagem. T. longibrachiatum é mais eficiente em manter as populações de bactérias láticas totais após a abertura. Portanto, essa cepa tem potencial como aditivo para silagem de capim-elefante 'Cameroon'.

16.
Braz J Microbiol ; 54(4): 3113-3125, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661212

RESUMO

The study aimed to evaluate the effectiveness of endophytic colonization via leaf and root inoculation of five Trichoderma species in a Eucalyptus hybrid, as well as the effects of inoculation on plant growth. The experimental design was completely randomized in a 6 × 2 factorial scheme. Plant growth was evaluated during the experimental period at three different times: 20 days after inoculation (d.a.i), 40 d.a.i., and 60 d.a.i. A statistical difference was observed between the inoculation methods during each period and between the Trichoderma species. Plants inoculated with T. asperellum showed the greatest growth among the treatments. Root-inoculated plants produced the greatest growth response. This showed that the presence of Trichoderma in the roots assisted in nutrient assimilation, promoted greater plant growth, when compared with leaf-inoculated plants. Evaluation of the effectiveness of endophytic colonization was performed at each sampling period by collecting leaf samples, and at 60 d.a.i., by collecting leaf, stem, and root samples. T. longibrachiatum and T. harzianum were isolated from leaves at 20 d.a.i., with an increase in the number of colonized plants throughout the evaluation of leaf-inoculated plants. In root-inoculated plants, treatment with T. longibrachiatum, T. harzianum, and T. asperellum presented the highest endophytic colonization in the stem and root samples (at 60 d.a.i.).


Assuntos
Eucalyptus , Trichoderma , Trichoderma/fisiologia , Raízes de Plantas/microbiologia
17.
Microorganisms ; 11(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37630525

RESUMO

Trichoderma reesei is a saprophytic fungus that produces large amounts of cellulases and is widely used for biotechnological applications. Cerato-platanins (CPs) are a family of proteins universally distributed among Dikarya fungi and have been implicated in various functions related to fungal physiology and interaction with the environment. In T. reesei, three CPs are encoded in the genome: Trire2_111449, Trire2_123955, and Trire2_82662. However, their function is not fully elucidated. In this study, we deleted the Trire2_123955 gene (named here as epl2) in the wild-type QM6aΔtmus53Δpyr4 (WT) strain and examined the behavior of the Δepl2 strain compared with WT grown for 72 h in 1% cellulose using RNA sequencing. Of the 9143 genes in the T. reesei genome, 760 were differentially expressed, including 260 only in WT, 214 only in Δepl2, and 286 in both. Genes involved in oxidative stress, oxidoreductase activity, antioxidant activity, and transport were upregulated in the Δepl2 mutant. Genes encoding cell wall synthesis were upregulated in the mutant strain during the late growth stage. The Δepl2 mutant accumulated chitin and glucan at higher levels than the parental strain and was more resistant to cell wall stressors. These results suggest a compensatory effect in cell wall remodeling due to the absence of EPL2 in T. reesei. This study is expected to contribute to a better understanding of the role of the EPL2 protein in T. reesei and improve its application in biotechnological fields.

18.
J Fungi (Basel) ; 9(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37623628

RESUMO

The global environmental issue of arsenic (As) contamination in drinking water is a significant problem that requires attention. Therefore, the aim of this research was to address the application of a sustainable methodology for arsenic removal through mycoremediation aerated with micro-nanobubbles (MNBs), leading to bioscorodite (FeAsO4·2H2O) generation. To achieve this, the fungus Trichoderma atroviride was cultivated in a medium amended with 1 g/L of As(III) and 8.5 g/L of Fe(II) salts at 28 °C for 5 days in a tubular reactor equipped with an air MNBs diffuser (TR-MNBs). A control was performed using shaking flasks (SF) at 120 rpm. A reaction was conducted at 92 °C for 32 h for bioscorodite synthesis, followed by further characterization of crystals through Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray diffraction (XRD) analyses. At the end of the fungal growth in the TR-MNBs, the pH decreased to 2.7-3.0, and the oxidation-reduction potential (ORP) reached a value of 306 mV at 5 days. Arsenic decreased by 70%, attributed to possible adsorption through rapid complexation of oxidized As(V) with the exchangeable ferrihydrite ((Fe(III))4-5(OH,O)12), sites, and the fungal biomass. This mineral might be produced under oxidizing and acidic conditions, with a high iron concentration (As:Fe molar ratio = 0.14). The crystals produced in the reaction using the TR-MNBs culture broth and characterized by SEM, XRD, and FTIR revealed the morphology, pattern, and As-O-Fe vibration bands typical of bioscorodite and römerite (Fe(II)(Fe(III))2(SO4)4·14H2O). Arsenic reduction in SF was 30%, with slight characteristics of bioscorodite. Consequently, further research should include integrating the TR-MNBs system into a pilot plant for arsenic removal from contaminated water.

19.
Plants (Basel) ; 12(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447005

RESUMO

During plant interaction with beneficial microorganisms, fungi secrete a battery of elicitors that trigger plant defenses against pathogenic microorganisms. Among the elicitor molecules secreted by Trichoderma are cerato-platanin proteins, such as EPL1, from Trichoderma atroviride. In this study, Arabidopsis thaliana plants that express the TaEPL1 gene were challenged with phytopathogens to evaluate whether expression of EPL1 confers increased resistance to the bacterial pathogen Pseudomonas syringae and the necrotrophic fungus Botrytis cinerea. Infection assays showed that Arabidopsis EPL1-2, EPL1-3, EPL1-4 expressing lines were more resistant to both pathogens in comparison to WT plants. After Pseudomonas syringae infection, there were reduced disease symptoms (e.g., small chlorotic spots) and low bacterial titers in the three 35S::TaEPL1 expression lines. Similarly; 35S::TaEPL1 expression lines were more resistant to Botrytis cinerea infection, showing smaller lesion size in comparison to WT. Interestingly, an increase in ROS levels was detected in 35S::TaEPL1 expression lines when compared to WT. A higher expression of SA- and JA-response genes occurred in the 35S::TaEPL1 lines, which could explain the resistance of these EPL1 expression lines to both pathogens. We propose that EPL1 is an excellent elicitor, which can be used to generate crops with improved resistance to broad-spectrum diseases.

20.
Biotechnol Lett ; 45(9): 1093-1102, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37354337

RESUMO

OBJECTIVES: The aim of the present work was to perform the co-culture between Trichoderma longibrachiatum LMBC 172, a mesophilic fungus, with Thermothelomyces thermophilus LMBC 162, a thermophilic fungus, by submerged fermentation in a bioreactor. RESULTS: There was an increase in protein production, reaching the value of 35.60 ± 3.76 µg/ml at 72 h. An increase in the amount of proteins of 27.5% in relation to the isolated cultivation of T. longibrachiatum and 19.7% in comparison when T. thermophilus was isolated and cultivated. After that, the saccharification profile of three varieties of sugarcane (sugarcane in natura, culms of sugarcane SP80-3280, and culms of Energy cane) submitted in two pretreatments (autohydrolysis and chemical) was performed. The (e) chemical pretreatment was the better in generating of fermentable sugars from sugarcane bagasse and culms of Energy cane, while with the autohydrolysis pretreatment was obtained the better values to culms of SP80-3280 sugarcane. The sugars found were glucose, xylose, arabinose, and cellobiose. CONCLUSION: These results suggest that the co-culture between these microorganisms has the potential to produce an enzymatic cocktail with high performance in the hydrolysis of materials from the sugar-alcohol industry.


Assuntos
Hypocreales , Saccharum , Celulose/química , Técnicas de Cocultura , Hypocreales/metabolismo , Glucose/metabolismo , Fermentação , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA