Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
Acta Trop ; 257: 107329, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033969

RESUMO

In Triatoma infestans it was observed pyrethroid resistance attributed in part to an elevated oxidative metabolism mediated by cytochromes P450. The nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome P450 reductase (CPR) plays a crucial role in catalysing the electron transfer from NADPH to all cytochrome P450s. The daily variations in the expression of CPR gene and a P450 gene (CYP4EM7), both associated with insecticide resistance, suggested that their expressions would be under the endogenous clock control. To clarify the involvement of the clock in orchestration of the daily fluctuations in CPR and CYP4M7 genes expression, it was proposed to investigate the effect of silencing the clock gene period (per) by RNA interference (RNAi). The results obtained allowed to establish that the silencing of per gene was influenced by intake schemes used in the interference protocols. The silencing of per gene in T. infestans reduced its expression at all the time points analysed and abolished the characteristic rhythm in the transcriptional expression of per mRNA. The effect of the per gene silencing in the expression profiles at the transcriptional level of CPR and CYP4EM7 genes showed the loss of rhythmicity and demonstrated the biological clock involvement in the regulation of t heir expression.


Assuntos
Ritmo Circadiano , Resistência a Inseticidas , Interferência de RNA , Triatoma , Animais , Triatoma/genética , Triatoma/efeitos dos fármacos , Resistência a Inseticidas/genética , Ritmo Circadiano/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Vetores de Doenças
2.
Parasit Vectors ; 17(1): 287, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956689

RESUMO

BACKGROUND: The emergence of pyrethroid resistance has threatened the elimination of Triatoma infestans from the Gran Chaco ecoregion. We investigated the status and spatial distribution of house infestation with T. infestans and its main determinants in Castelli, a municipality of the Argentine Chaco with record levels of triatomine pyrethroid resistance, persistent infestation over 2005-2014, and limited or no control actions over 2015-2020. METHODS: We conducted a 2-year longitudinal survey to assess triatomine infestation by timed manual searches in a well-defined rural section of Castelli including 14 villages and 234 inhabited houses in 2018 (baseline) and 2020, collected housing and sociodemographic data by on-site inspection and a tailored questionnaire, and synthetized these data into three indices generated by multiple correspondence analysis. RESULTS: The overall prevalence of house infestation in 2018 (33.8%) and 2020 (31.6%) virtually matched the historical estimates for the period 2005-2014 (33.7%) under recurrent pyrethroid sprays. While mean peridomestic infestation remained the same (26.4-26.7%) between 2018 and 2020, domestic infestation slightly decreased from 12.2 to 8.3%. Key triatomine habitats were storerooms, domiciles, kitchens, and structures occupied by chickens. Local spatial analysis showed significant aggregation of infestation and bug abundance in five villages, four of which had very high pyrethroid resistance approximately over 2010-2013, suggesting persistent infestations over space-time. House bug abundance within the hotspots consistently exceeded the estimates recorded in other villages. Multiple regression analysis revealed that the presence and relative abundance of T. infestans in domiciles were strongly and negatively associated with indices for household preventive practices (pesticide use) and housing quality. Questionnaire-derived information showed extensive use of pyrethroids associated with livestock raising and concomitant spillover treatment of dogs and (peri) domestic premises. CONCLUSIONS: Triatoma infestans populations in an area with high pyrethroid resistance showed slow recovery and propagation rates despite limited or marginal control actions over a 5-year period. Consistent with these patterns, independent experiments confirmed the lower fitness of pyrethroid-resistant triatomines in Castelli compared with susceptible conspecifics. Targeting hotspots and pyrethroid-resistant foci with appropriate house modification measures and judicious application of alternative insecticides with adequate toxicity profiles are needed to suppress resistant triatomine populations and prevent their eventual regional spread.


Assuntos
Doença de Chagas , Resistência a Inseticidas , Inseticidas , Piretrinas , Triatoma , Animais , Triatoma/efeitos dos fármacos , Triatoma/fisiologia , Piretrinas/farmacologia , Argentina , Inseticidas/farmacologia , Doença de Chagas/transmissão , Doença de Chagas/epidemiologia , Humanos , Estudos Longitudinais , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/fisiologia , Habitação , Ecossistema , Controle de Insetos
3.
Acta Trop ; 257: 107307, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38950764

RESUMO

Insecticide resistance is considered a barrier to chemical control of Triatoma infestans, the main vector of Chagas disease in the Southern Cone of South America. Although initiatives to reduce the incidence of the disease in the region have integrated different strategies, they have mainly relied on vector elimination using pyrethroid insecticides such as deltamethrin. Reports of pyrethroid resistance in connection with T. infestans control failures first emerged in northern Argentina and southern Bolivia. Recently, a mosaic pyrethroid-resistant focus has been described in the center of the Argentine Gran Chaco (Department of General Güemes, Chaco Province), characterized by the presence of susceptible and very highly resistant populations in the same area. The involvement of different resistance mechanisms has been proposed, together with the contribution of environmental variables that promote the toxicological heterogeneity described. In the endemic zone of Argentina, however, new questions arise: Are there any other clusters of resistance? Is there a relationship between the distribution of resistance and environmental variables (as has been observed at smaller scale)? We studied toxicological data from insects collected and analyzed at 224 localities between 2010 and 2020 as part of the resistance monitoring conducted by the Chagas National Program. The sites were classified according to the survival rate of insects exposed to a discriminant dose of deltamethrin: 0-0.19 were considered susceptible, 0.2-0.79 low-resistance, and 0.8-1 high-resistance. Localities were georeferenced to describe the spatial distribution of resistance and to identify environmental variables (demographics, land use, urbanization, connectivity, and climate) potentially associated with resistance. We used Generalized Linear Models (GLMs) to examine the association between resistance and environmental predictors, selecting error distributions based on the response variable definition. For the entire period, 197 susceptible localities were distributed across the endemic zone. Localities with different survival rates were found throughout the area; 9 high-resistance localities circled the two previously identified resistant foci, and 18 low-resistance in 6 provinces, highlighting their relevance for control planning. Precipitation variables were linked to resistance in all the GLMs evaluated. Presence/absence models were the most accurate, with precipitation, distance from the capital city, and land use contributing to the distribution of resistance. This information could be valuable for improving T. infestans control strategies in future scenarios characterized by unpredictable changes in land use and precipitation.


Assuntos
Doença de Chagas , Resistência a Inseticidas , Inseticidas , Piretrinas , Triatoma , Triatoma/efeitos dos fármacos , Argentina , Piretrinas/farmacologia , Animais , Inseticidas/farmacologia , Doença de Chagas/transmissão , Doença de Chagas/epidemiologia , Insetos Vetores/efeitos dos fármacos , Nitrilas/farmacologia
4.
J Med Entomol ; 61(5): 1105-1114, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38995691

RESUMO

Triatomine bugs are vectors for the Trypanosoma cruzi Chagas parasites, the etiological agent for Chagas disease. This study evaluated 6 epidemiologically significant behaviors (development time, number of blood meals required for molting to the next instar, mortality rate, aggressiveness, feeding duration, and defecation delay) across 4 populations of Triatoma mexicana Herrich-Schaeffer (Heteroptera: Reduviidae), a major T. cruzi vector in Central Mexico. We collected triatomines from areas characterized by high (HP), medium (MP), medium-high (MHP), and low (LP) prevalence of human T. cruzi infection. The MHP population had the shortest development time, <290 days. Both the HP and MP populations required the most blood meals to molt to the next instar, with a median of 13. Mortality rates varied across all populations, ranging from 44% to 52%. All of the tested populations showed aggressive behavior during feeding. All populations shared similar feeding durations, with most exceeding 13 min and increasing with each instar. Quick defecation, during feeding, immediately after or less than 1 min after feeding, was observed in most nymphs (78%-90%) from the MP and MHP populations and adults (74%-92%) from HP, MP, and MHP populations. Though most parameters suggest a low potential for T. mexicana to transmit T. cruzi, unique feeding and defecation behaviors in 3 populations (excluding the LP group) could elevate their epidemiological importance. These population-specific differences may contribute to the varying prevalence rates of T. cruzi infection in areas where T. mexicana is found.


Assuntos
Triatoma , Animais , Triatoma/fisiologia , Triatoma/crescimento & desenvolvimento , Triatoma/parasitologia , México/epidemiologia , Características de História de Vida , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Feminino , Comportamento Alimentar , Masculino , Insetos Vetores/fisiologia , Defecação , Doença de Chagas/transmissão
5.
J Invertebr Pathol ; 206: 108161, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38914370

RESUMO

Triatomine bugs are vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease in the American continent. Here, we have tested a loop-mediated isothermal amplification (LAMP) test for a direct detection of T. cruzi in feces of Triatoma infestans, the main vector of this parasite in the Southern Cone of America. The analytical evaluation showed positive results with samples of triatomine feces artificially inoculated with DNA from strains of T. cruzi corresponding to each Discrete Typing Units (I-VI), with a sensitivity of up to one parasite per reaction. Conversely, the reaction yielded negative results when tested with DNA from Trypanosoma rangeli and other phylogenetically related and unrelated organisms. In triatomines captured under real field conditions (from urban households), and defined as positive or negative for T. cruzi using the reference microscopy technique, the LAMP test achieved a concordance of 100 %. Our results demonstrate that this LAMP reaction exhibits excellent analytical specificity and sensitivity without interference from the fecal matrix, since all the reactions were conducted without purification steps. This simple molecular diagnostic technique can be easily used by vector control agencies under field conditions.


Assuntos
Doença de Chagas , Fezes , Insetos Vetores , Técnicas de Amplificação de Ácido Nucleico , Triatoma , Trypanosoma cruzi , Animais , Fezes/parasitologia , Trypanosoma cruzi/isolamento & purificação , Doença de Chagas/parasitologia , Doença de Chagas/diagnóstico , Triatoma/parasitologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Insetos Vetores/parasitologia , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular
6.
Parasit Vectors ; 17(1): 208, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720313

RESUMO

BACKGROUND: Triatoma infestans, Triatoma brasiliensis, Triatoma pseudomaculata and Rhodnius prolixus are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. Chickens serve as an important blood food source for triatomines. This study aimed to assess the insecticidal activity of fluralaner (Exzolt®) administered to chickens against triatomines (R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata). METHODS: Twelve non-breed chickens (Gallus gallus domesticus) were randomized based on weight into three groups: negative control (n = 4); a single dose of 0.5 mg/kg fluralaner (Exzolt®) (n = 4); two doses of 0.5 mg/kg fluralaner (Exzolt®) (n = 4). Nymphs of 3rd, 4th and 5th instars of R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata (all n = 10) were allowed to feed on chickens before treatment, and at intervals of 1, 7, 14, 21, 28, 35 and 56 days after treatment, with insect mortality determined. RESULTS: Treatment with two doses of fluralaner showed higher insecticidal efficacy against R. prolixus, T. infestans and T. brasiliensis compared to the single-dose treatment. Similar insecticidal efficacy was observed for T. pseudomaculata for one and two doses of fluralaner. Insecticidal activity of fluralaner (Exzolt®) against triatomine bugs was noted up to 21 and 28 days after treatment with one and two doses of fluralaner, respectively. CONCLUSIONS: The results demonstrate that treatment of chickens with fluralaner (Exzolt®) induces insecticidal activity against triatomines for up to 28 days post-treatment, suggesting its potential use as a control strategy for Chagas disease in endemic areas.


Assuntos
Galinhas , Inseticidas , Isoxazóis , Animais , Galinhas/parasitologia , Isoxazóis/farmacologia , Isoxazóis/administração & dosagem , Inseticidas/farmacologia , Inseticidas/administração & dosagem , Insetos Vetores/efeitos dos fármacos , Doença de Chagas/transmissão , Doença de Chagas/tratamento farmacológico , Doença de Chagas/veterinária , Triatominae , Ninfa/efeitos dos fármacos , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/prevenção & controle , Triatoma/efeitos dos fármacos
7.
Vaccine ; 42(18): 3916-3929, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38782665

RESUMO

Nonenveloped virus-like particles (VLPs) are self-assembled oligomeric structures composed of one or more proteins that originate from diverse viruses. Because these VLPs have similar antigenicity to the parental virus, they are successfully used as vaccines against cognate virus infection. Furthermore, after foreign antigenic sequences are inserted in their protein components (chimVLPs), some VLPs are also amenable to producing vaccines against pathogens other than the virus it originates from (these VLPs are named platform or epitope carrier). Designing chimVLP vaccines is challenging because the immunogenic response must be oriented against a given antigen without altering stimulant properties inherent to the VLP. An important step in this process is choosing the location of the sequence modifications because this must be performed without compromising the assembly and stability of the original VLP. Currently, many immunogenic data and computational tools can help guide the design of chimVLPs, thus reducing experimental costs and work. In this study, we analyze the structure of a novel VLP that originate from an insect virus and describe the putative regions of its three structural proteins amenable to insertion. For this purpose, we employed molecular dynamics (MD) simulations to assess chimVLP stability by comparing mutated and wild-type (WT) VLP protein trajectories. We applied this procedure to design a chimVLP that can serve as a prophylactic vaccine against the SARS-CoV-2 virus. The methodology described in this work is generally applicable for VLP-based vaccine development.


Assuntos
Epitopos , Vacinas de Partículas Semelhantes a Vírus , Vacinas de Partículas Semelhantes a Vírus/imunologia , Epitopos/imunologia , Epitopos/genética , Humanos , SARS-CoV-2/imunologia , Simulação de Dinâmica Molecular , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Biologia Computacional/métodos
8.
Acta Trop ; 256: 107259, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821148

RESUMO

In Mexico, more than 30 species of triatomines, vectors of Trypanosoma cruzi, the etiological agent of Chagas disease, have been collected. Among them, Triatoma pallidipennis stands out for its wide geographical distribution, high infection rates and domiciliation. Local populations of triatomines have shown notable biological and behavioral differences, influencing their vectorial capacity. Six behaviors of epidemiological importance, namely, egg-to-adult development time, median number of blood meals to molt to the next instar, instar mortality rates, aggressiveness (delay in initiating a meal), feeding time and defecation delay, were evaluated in this study for six populations of T. pallidipennis. Those populations from central, western and southern Mexico were arranged by pairs with a combination of high (HP) and medium (MP) of Trypanosoma cruzi human infection and most (MFC) and low (CLF) collection frequencies: HP/MFC, HP/CLF, and MP/MFC. The development time was longer in HP/CLF populations (> 220 days). The median number of blood meals to molt was similar (7-9) among five of the six populations. Mortality rates were greater (> 40 %) in HP/CLF and one MP/MFC populations. All studied populations were aggressive but exhibited slight differences among them. The feeding times were similar (≥ 10 min) for all studied populations within instars, increasing as instars progressed. An irregular pattern was observed in defecation behaviors, with marked differences even between the two populations from the same pair. High percentages of young (57.3-87.9 %), and old (62.4-89.8 %) nymphs, of female (61.1-97.3 %) and male (65.7-93.1 %) of all the studied populations defecated quickly (while eating, immediately after finishing feeding or < 1 min postfeeding). Our results indicate that the HP/MFC populations are potentially highly effective vectors for transmitting T. cruzi infections, while HP/CLF populations are potentially less effective vectors T. cruzi infections.


Assuntos
Doença de Chagas , Insetos Vetores , Triatoma , Trypanosoma cruzi , Animais , Triatoma/parasitologia , Triatoma/fisiologia , Doença de Chagas/transmissão , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia , México/epidemiologia , Feminino , Trypanosoma cruzi/fisiologia , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Humanos , Masculino , Comportamento Alimentar , Prevalência , Defecação/fisiologia
9.
Acta Trop ; 256: 107239, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38735448

RESUMO

Chagas disease is caused by the protozoan parasite Trypanosoma cruzi (Chagas, 1909). One of the primary vectors of T. cruzi in South America is Triatoma infestans (Klug, 1834). This triatomine species is distributed across a huge latitudinal gradient, inhabiting domiciliary , peridomiciliary , and wild environments. Its wide geographic distribution provides an excellent opportunity to study the relationships between environmental gradients and intraspecific morphological variation. In this study, we investigated variations in wing size and shape in T. infestans across six ecoregions. We aimed to address the following questions: How do wing size and shape vary on a regional scale, does morphological variation follow specific patterns along an environmental or latitudinal gradient, and what environmental factors might contribute to wing variation? Geometric morphometric methods were applied to the wings of 162 females belonging to 21 T. infestans populations, 13 from Argentina (n = 105), 5 from Bolivia (n = 42), and 3 from Paraguay (n = 15). A comparison of wing centroid size across the 21 populations showed significant differences. Canonical Variate Analysis (CVA) revealed significant differences in wing shape between the populations from Argentina, Bolivia, and Paraguay, although there was a considerable overlap, especially among the Argentinian populations. Well-structured populations were observed for the Bolivian and Paraguayan groups. Two analyses were performed to assess the association between wing size and shape, geographic and climatic variables: multiple linear regression analysis (MRA) for size and Partial Least Squares (PLS) regression for shape. The MRA showed a significant general model fit. Six temperature-related variables, one precipitation-related variable, and the latitude showed significant associations with wing size. The PLS analysis revealed a significant correlation between wing shape with latitude, longitude, temperature-related, and rainfall-related variables. Wing size and shape in T. infestans populations varied across geographic distribution. Our findings demonstrate that geographic and climatic variables significantly influence T. infestans wing morphology.


Assuntos
Triatoma , Asas de Animais , Animais , Triatoma/anatomia & histologia , Triatoma/fisiologia , Triatoma/crescimento & desenvolvimento , Triatoma/classificação , Asas de Animais/anatomia & histologia , Feminino , Argentina , Bolívia , Paraguai , Doença de Chagas/transmissão
10.
Acta Trop ; 256: 107262, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801912

RESUMO

Chagas disease is a zoonosis caused by the protozoan Trypanosoma cruzi and transmitted through the feces of triatomines, mainly in Latin America. Since the 1950s, chemical insecticides have been the primary method for controlling these triatomines, yet resistance has emerged, prompting the exploration of alternative approaches. The objective of this research was to test the capacity of the entomopathogenic nematodes Heterorhabditis indica and its symbiotic bacteria Photorhabdus luminescens, to produce mortality of Triatoma dimidiata a key vector of T. cruzi in Mexico under laboratory conditions. Two bioassays were conducted. In the first bioassay, the experimental unit was a 250 ml plastic jar with 100 g of sterile soil and three adult T. dimidiata. Three nematode quantities were tested: 2250, 4500, and 9000 nematodes per 100 g of sterile soil (n/100 g) per jar, with 3 replicates for each concentration and 1 control per concentration (1 jar with 100 g of sterile soil and 3 T. dimidiata without nematodes). The experimental unit of the second bioassay was a 500 ml plastic jar with 100 g of sterile soil and 4 adult T. dimidiata. This bioassay included 5, 50, 500, and 5000 n/100 g of sterile soil per jar, with 3 replicates of each quantity and 1 control per quantity. Data were analyzed using Kaplan-Meyer survival analysis. Electron microscopy was used to assess the presence of nematodes and tissue damage in T. dimidiata. The results of the first bioassay demonstrated that the nematode induced an accumulated average mortality ranging from 55.5 % (2250 n/100 g) to 100 % (4500 and 9000 n/100 g) within 144 h. In the second bioassay, the 5000 n/100 g concentration yielded 87.5 % mortality at 86 h, but a concentration as small as 500 n/100 g caused 75 % mortality from 84 h onwards. Survival analysis indicated higher T. dimidiata mortality with increased nematode quantities, with significant differences between the 4500, 5000, and 9000 n/100 g and controls. Electron microscopy revealed the presence of nematodes and its presumably symbiotic bacteria in the digestive system of T. dimidiata. Based on these analyses, we assert that the H. indica and P. luminescens complex causes mortality in adult T. dimidiata under laboratory conditions.


Assuntos
Doença de Chagas , Photorhabdus , Triatoma , Animais , Doença de Chagas/parasitologia , Doença de Chagas/prevenção & controle , Triatoma/parasitologia , México , Análise de Sobrevida , Rabditídios/fisiologia , Agentes de Controle Biológico , Controle Biológico de Vetores/métodos , Rhabditoidea/fisiologia , Vetores de Doenças , Trypanosoma cruzi/fisiologia
11.
Parasit Vectors ; 17(1): 169, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566228

RESUMO

BACKGROUND: Triatoma garciabesi and T. guasayana are considered secondary vectors of Trypanosoma cruzi and frequently invade rural houses in central Argentina. Wing and head structures determine the ability of triatomines to disperse. Environmental changes exert selective pressures on populations of both species, promoting changes in these structures that could have consequences for flight dispersal. The aim of this study was to investigate the relationship between a gradient of anthropization and phenotypic plasticity in flight-related traits. METHODS: The research was carried out in Cruz del Eje and Ischilín departments (Córdoba, Argentina) and included 423 individuals of the two species of triatomines. To measure the degree of anthropization, a thematic map was constructed using supervised classification, from which seven landscapes were selected, and nine landscape metrics were extracted and used in a hierarchical analysis. To determine the flight capacity and the invasion of dwellings at different levels of anthropization for both species, entomological indices were calculated. Digital images of the body, head and wings were used to measure linear and geometric morphometric variables related to flight dispersion. One-way ANOVA and canonical variate analysis (CVA) were used to analyze differences in size and shape between levels of anthropization. Procrustes variance of shape was calculated to analyze differences in phenotypic variation in heads and wings. RESULTS: Hierarchical analysis was used to classify the landscapes into three levels of anthropization: high, intermediate and low. The dispersal index for both species yielded similar results across the anthropization gradient. However, in less anthropized landscapes, the density index was higher for T. garciabesi. Additionally, in highly anthropized landscapes, females and males of both species exhibited reduced numbers. Regarding phenotypic changes, the size of body, head and wings of T. garciabesi captured in the most anthropized landscapes was greater than for those captured in less anthropized landscapes. No differences in body size were observed in T. guasayana collected in the different landscapes. However, males from highly anthropized landscapes had smaller heads and wings than those captured in less anthropized landscapes. Both wing and head shapes varied between less and more anthropogenic environments in both species. CONCLUSIONS: Results of the study indicate that the flight-dispersal characteristics of T. garciabesi and T. guasayana changed in response to varying degrees of anthropization.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Humanos , Masculino , Animais , Feminino , Triatoma/fisiologia , População Rural , Argentina , Análise de Variância
12.
Acta Trop ; 253: 107169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432403

RESUMO

Triatoma dimidiata is a vector of the hemoparasite Trypanosoma cruzi, the causal agent of Chagas disease. It settles reproductive colonies in the peridomicile of the premises. The peridomicile is comprised of a random set of artificial and natural features that overlap and assemble a network of microenvironmental suitable sites (patches) that interact with each other and favor the structure and proliferation of T. dimidiata colonies. The heterogeneity of patch characteristics hinders the understanding and identification of sites susceptible to colonization. In this study, a classification system using a random forest algorithm was used to identify peridomiciles susceptible to colonization to describe the spatial distribution of these sites and their relationship with the colonies of T. dimidiata in ten localities of Yucatan. From 1,000 peridomiciles reviewed, the classification showed that 13.9 % (139) of the patches were highly susceptible (HSP), and 86.1 % (861) were less susceptible (LSP). All localities had at least one HSP. The occupancy by patch type showed that the percentage of total occupancy and by colonies was higher in the HSP, while the occupancy by adult T. dimidiata without evidence of nymphs or exuviae (propagules) was higher in the LSP. A generalized additive model (GAM) revealed that the percentage of occupied patches increases as the abundance of individuals in the localities increases however, the percentage of occupied patches in LSP is lower than occupied in HSP. Distance analyses revealed that colonies and propagules were located significantly closer (approximately 200 m) to a colony in a HSP than any colony in a LSP. The distribution of T. dimidiata in the localities was defined by the distribution of patch type; as the occupancy in these patches increased, a network of peridomestic populations was configured, which may be promoted by a greater abundance of insects inside the localities. These results reveal that the spatial distribution of T. dimidiata individuals and colonies in the peridomicile at the locality scale corresponds to a metapopulation pattern within the localities through a system of patches mediated by distance and level of the vectors' occupancy.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Humanos , Animais , Triatoma/parasitologia , Insetos Vetores/parasitologia , Ninfa
13.
Acta Trop ; 252: 107149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360259

RESUMO

The enzyme NADPH-cytochrome P450 reductase (CPR) plays a central role in cytochromes P450 activity. Gene expression analysis of cytochromes P450 and CPR in deltamethrin-resistant and susceptible populations revealed that P450s genes are involved in the development of insecticide resistance in Triatoma infestans. To clarify the role of cytochromes P450 in insecticide resistance, it was proposed to investigate the effect of CPR gene silencing by RNA interference (RNAi) in a pyrethroid resistant population of T. infestans. Silencing of the CPR gene showed a significant increase in susceptibility to deltamethrin in the population analysed. This result support the hypothesis that the metabolic process of detoxification mediated by cytochromes P450 contributes to the decreased deltamethrin susceptibility observed in the resistant strain of T. infestans.


Assuntos
Doença de Chagas , Inseticidas , Piretrinas , Triatoma , Animais , Inseticidas/farmacologia , Interferência de RNA , Piretrinas/farmacologia , Doença de Chagas/genética , Nitrilas/farmacologia , Resistência a Inseticidas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/farmacologia
14.
Mem. Inst. Oswaldo Cruz ; 119: e240002, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1575296

RESUMO

BACKGROUND The city of El Pedregal grew out of a desert, following an agricultural irrigation project in southern Peru. OBJECTIVES To describe infestation patterns by triatomines and bed bugs and their relationship to migration and urbanization. METHODS We conducted door-to-door entomological surveys for triatomines and bed bugs. We assessed spatial clustering of infestations and compared the year of construction of infested to un-infested households. To gain a better understanding of the context surrounding triatomine infestations, we conducted in-depth interviews with residents to explore their migration histories, including previous experiences with infestation. FINDINGS We inspected 5,164 households for Triatoma infestans (known locally as the Chirimacha); 21 (0.41%) were infested. These were extremely spatially clustered (Ripley's K p-value < 0.001 at various spatial scales). Infested houses were older than controls (Wilcoxon rank-sum: W = 33; p = 0.02). We conducted bed bug specific inspections in 34 households; 23 of these were infested. These were spatially dispersed across El Pedregal, and no difference was observed in construction age between bed bug infested houses and control houses (W = 6.5, p = 0.07). MAIN CONCLUSIONS The establishment of agribusiness companies in a desert area demanded a permanent work force, leading to the emergence of a new city. Migrant farmers, seeking work opportunities or escaping from adverse climatic events, arrived with few resources, and constructed their houses with precarious materials. T. infestans, a Chagas disease vector, was introduced to the city and colonized houses, but its dispersal was constrained by presence of vacant houses. We discuss how changes in the socioeconomic and agricultural landscape can increase vulnerability to vector-borne illnesses.

15.
Rev. Soc. Bras. Med. Trop ; Rev. Soc. Bras. Med. Trop;57: e00700, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1535381

RESUMO

ABSTRACT Background: We assessed the distribution of triatomines in an endemic area for Chagas disease. Methods: This retrospective study used secondary data extracted from the Official System of the National Chagas Disease Control Program (Sistema Oficial do Programa Nacional de Controle da Doença de Chagas - SisPCDCh). Results: A total of 7,257 (725.7 ± 221.7 per year) specimens were collected from 2013 to 2022. Most of them (6,792; 93.6%) were collected in the intradomicile and 465 (6.4%) in the peridomicile. A total of 513 (7.1%) triatomines tested positive for the presence of trypomastigote forms, similar to Trypanosoma cruzi. Conclusions: The spatial analysis revealed a heterogeneous distribution of triatomines across different municipalities.

16.
Acta Trop ; 248: 107038, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839668

RESUMO

In the Yucatan Peninsula, Mexico, Triatoma dimidiata is the main vector of Chagas disease. This is a native species in the region that principally inhabits sylvatic habitats. Nevertheless, it shows a tolerant behavior to anthropogenic disturbance, with adult bugs frequently infesting human dwellings, principally during the warm and dry season. Yet, whether the temporal variation of abundance is independent of the habitat and how this is related to the infection rate with Trypanosoma cruzi in Yucatan is still poorly understood. The objective of this study was to simultaneously analyze the temporal variations of T. dimidiata abundance and infection with T. cruzi in domestic and sylvatic habitats from two localities of rural Yucatan (Sudzal, 20°52'19″N, 88°59'20″W and Teya, 21°02'55″N, 89°04'25″W) to help for the further improvement of locally adapted strategies aimed at controlling T. cruzi vector transmission. Using community participation and a combination of different trapping techniques, we collected T. dimidiata bugs during 29 consecutive months within domestic and sylvatic habitats. We then assessed by PCR the infection of the bugs with T. cruzi. Generalized linear models were used to evaluate the effect of climatic variables on the abundance of T. dimidiata and the effect of bug sex, season and habitat on the prevalence of infection with T. cruzi. Overall, 3640 specimens of T. dimidiata were collected. We clearly observed peaks of maximum abundance in both habitats during the warm and dry season and found a negative association of bug abundance with relative humidity. The overall prevalence of infection of the bugs with T. cruzi was 15.2 %. Additionally, bugs collected in domestic habitats displayed a significantly higher prevalence of infection than sylvatic bugs (19.6% vs. 6.1 %, respectively), suggesting an increased risk of T. cruzi transmission related with anthropogenic disturbance. Our study is the first to describe the annual pattern of abundance of T. dimidiata in sylvatic habitats of rural Yucatan and constitutes a contribution to the knowledge of T. dimidiata ecology and of T. cruzi transmission cycle dynamics in the region. In Yucatan, where the use of mosquito nets has shown to be effective to limit human dwelling infestation by T. dimidiata, reinforcing the awareness of local residents about the increased risk of T. cruzi transmission during the warm and dry season when realizing activities in the sylvatic ambient should be, among others, also considered to improve control strategies and limit the risk of vector transmission.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , Humanos , México/epidemiologia , Doença de Chagas/epidemiologia , Ecossistema
17.
BMC Public Health ; 23(1): 1834, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37730592

RESUMO

Community engagement strategies provide tools for sustainable vector-borne disease control. A previous cluster randomized control trial engaged nine intervention communities in seven participatory activities to promote management of the domestic and peri-domestic environment to reduce risk factors for vector-borne Chagas disease. This study aims to assess the adoption of this innovative community-based strategy, which included chickens' management, indoor cleaning practices, and domestic rodent infestation control, using concepts from the Diffusion of Innovations Theory. We used questionnaires and semi-structured interviews to understand perceptions of knowledge gained, intervention adoption level, innovation attributes, and limiting or facilitating factors for adoption. The analysis process focused on five innovation attributes proposed by the Diffusion of Innovations Theory: relative advantage, compatibility, complexity, trialability, and observability. Rodent management was highly adopted by participants, as it had a relative advantage regarding the use of poison and was compatible with local practices. The higher complexity was reduced by offering several types of trapping systems and having practical workshops allowed trialability. Observability was limited because the traps were indoors, but information and traps were shared with neighbors. Chicken management was not as widely adopted due to the higher complexity of the method, and lower compatibility with local practices. Using the concepts proposed by the Diffusion of Innovations Theory helped us to identify the enablers and constraints in the implementation of the Chagas vector control strategy. Based on this experience, community engagement and intersectoral collaboration improve the acceptance and adoption of novel and integrated strategies to improve the prevention and control of neglected diseases.


Assuntos
Galinhas , Colaboração Intersetorial , Animais , Humanos , Conhecimento , Doenças Negligenciadas , Fatores de Risco
18.
Acta Trop ; 247: 107010, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37666351

RESUMO

Genetic and morphological structure of vector populations are useful to identify panmictic groups, reinfestation sources and minimal units for control interventions. Currently, no studies have integrated genetic and morphometric data in Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of Trypanosoma cruzi. We characterized the genetic and phenotypic structure of T. infestans at a small spatial scale (2-8 km), identified potential migrants and compared flight-related traits among genetic groups and between migrant and non-migrant insects in a well-defined area without insecticide spraying in the previous 12 years. We obtained microsatellite genotypes (N = 303), wing shape and size (N = 164) and body weight-to-length ratios (N = 188) in T. infestans from 11 houses in Pampa del Indio, Argentine Chaco. The uppermost level of genetic structuring partially agreed with the morphological groups, showing high degrees of substructuring. The genetic structure showed a clear spatial pattern around Route 3 and one genetic group overlapped with an area of persistent infestation and insecticide resistance. Females harboured more microsatellite alleles than males, which showed signs of isolation-by-distance. Wing shape discriminant analyses of genetic groups revealed low reclassification scores whereas wing size differed among genetic groups for both sexes. Potential migrants (8%) did not differ from non-migrants in sex, ecotope, wing shape and size. However, male migrants had lower W/L than non-migrants suggesting poorer nutritional state. Our findings may contribute to the understanding of population characteristics, dispersal dynamics and ongoing elimination efforts of T. infestans.


Assuntos
Triatoma , Feminino , Animais , Masculino , Triatoma/genética , Alelos , Análise Discriminante , Genótipo , Resistência a Inseticidas
19.
Parasit Vectors ; 16(1): 225, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415248

RESUMO

BACKGROUND: Triatomines are blood-sucking insects capable of transmitting Trypanosoma cruzi, the parasite that causes Chagas disease in humans. Vectorial transmission entails an infected triatomine feeding on a vertebrate host, release of triatomine infective dejections, and host infection by the entry of parasites through mucous membranes, skin abrasions, or the biting site; therefore, transmission to humans is related to the triatomine-human contact. In this cross-sectional study, we evaluated whether humans were detected in the diet of three sylvatic triatomine species (Mepraia parapatrica, Mepraia spinolai, and Triatoma infestans) present in the semiarid-Mediterranean ecosystem of Chile. METHODS: We used triatomines collected from 32 sites across 1100 km, with an overall T. cruzi infection frequency of 47.1% (N = 4287 total specimens) by conventional PCR or qPCR. First, we amplified the vertebrate cytochrome b gene (cytb) from all DNA samples obtained from triatomine intestinal contents. Then, we sequenced cytb-positive PCR products in pools of 10-20 triatomines each, grouped by site. The filtered sequences were grouped into amplicon sequence variants (ASVs) with a minimum abundance of 100 reads. ASVs were identified by selecting the best BLASTn match against the NCBI nucleotide database. RESULTS: Overall, 16 mammal (including human), 14 bird, and seven reptile species were identified in the diet of sylvatic triatomines. Humans were part of the diet of all analyzed triatomine species, and it was detected in 19 sites representing 12.19% of the sequences. CONCLUSIONS: Sylvatic triatomine species from Chile feed on a variety of vertebrate species; many of them are detected here for the first time in their diet. Our results highlight that the sylvatic triatomine-human contact is noteworthy. Education must be enforced for local inhabitants, workers, and tourists arriving in endemic areas to avoid or minimize the risk of exposure to Chagas disease vectors.


Assuntos
Doença de Chagas , Triatoma , Triatominae , Trypanosoma cruzi , Animais , Humanos , Ecossistema , Chile/epidemiologia , Estudos Transversais , Triatoma/genética , Triatoma/parasitologia , Triatominae/parasitologia , Trypanosoma cruzi/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mamíferos/genética
20.
J Vector Ecol ; 48(1): 1-6, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37255353

RESUMO

Triatoma pallidipennis is an exclusive and widely distributed species in Mexico and one of the three main vectors that transmit Chagas disease in the country. The state of Hidalgo is an endemic area for Chagas disease where the presence of several species of triatomines has been reported. The objective of our work was to describe the morphology, colonization process, and reproductive behavior of T. pallidipennis in Guadalupe, Tecozautla, two years after the first collection of a specimen in this region. A total of 28 specimens was collected at both domicile and peridomicile, showing a 17.8% infection rate. The main collection site was a woodshed, and despite the collection of adults in the dwelling, we did not find eggs, exuviae, or nymphs. One female monitored from collection day until death laid 566 eggs, with a hatching rate of 95%, showing an increase of oviposition when cohabited with a male. The results showed the capacity that T. pallidipennis has to infest areas (mainly human dwellings) when it settles down, which would imply a risk for the population that lives in the locality.


Assuntos
Doença de Chagas , Triatoma , Triatominae , Trypanosoma cruzi , Masculino , Feminino , Humanos , Animais , México/epidemiologia , Insetos Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA