Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PeerJ ; 12: e17877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131614

RESUMO

Background: Plants allocate resources to growth, defense, and stress resistance, and resource availability can affect the balance between these allocations. Allocation patterns are well-known to differ among species, but what controls possible intra-specific trade-offs and if variation in growth vs. defense potentially evolves in adaptation to resource availability. Methods: We measured growth and defense in a provenance trial of rubber trees (Hevea brasiliensis) with clones originating from the Amazon basin. To test hypotheses on the allocation to growth vs. defense, we relate biomass growth and latex production to wood and leaf traits, to climate and soil variables from the location of origin, and to the genetic relatedness of the Hevea clones. Results: Contrary to expectations, there was no trade-off between growth and defense, but latex yield and biomass growth were positively correlated, and both increased with tree size. The absence of a trade-off may be attributed to the high resource availability in a plantation, allowing trees to allocate resources to both growth and defense. Growth was weakly correlated with leaf traits, such as leaf mass per area, intrinsic water use efficiency, and leaf nitrogen content, but the relative investment in growth vs. defense was not associated with specific traits or environmental variables. Wood and leaf traits showed clinal correlations to the rainfall and soil variables of the places of origin. These traits exhibited strong phylogenetic signals, highlighting the role of genetic factors in trait variation and adaptation. The study provides insights into the interplay between resource allocation, environmental adaptations, and genetic factors in trees. However, the underlying drivers for the high variation of latex production in one of the commercially most important tree species remains unexplained.


Assuntos
Hevea , Látex , Folhas de Planta , Hevea/genética , Hevea/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Látex/metabolismo , Biomassa , Madeira/genética , Filogenia , Especificidade da Espécie
2.
Plants (Basel) ; 12(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37176864

RESUMO

In the upper vegetation limit of the Andes, trees change to shrub forms or other life forms, such as low scrubs. The diversity of life forms decreases with elevation; tree life forms generally decrease, and communities of shrubs and herbs increase in the Andean highlands. Most of treeline populations in the northwestern Argentina Altiplano are monospecific stands of Polylepis tarapacana, a cold-tolerant evergreen species that is able to withstand harsh climatic conditions under different life forms. There are no studies for P. tarapacana that analyze life forms across environmental and human impact gradients relating them with environmental factors. This study aims to determine the influence of topographic, climatic, geographic and proxies to human uses on the occurrence of life forms in P. tarapacana trees. We worked with 70 plots, and a new proposal of tree life form classification was presented for P. tarapacana (arborescent, dwarf trees, shrubs and brousse tigrée). We describe the forest biometry of each life form and evaluate the frequency of these life forms in relation to the environmental factors and human uses. The results show a consistency in the changes in the different life forms across the studied environmental gradients, where the main changes were related to elevation, slope and temperature.

3.
Ann Bot ; 131(6): 941-951, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36996263

RESUMO

BACKGROUND AND AIMS: The vulnerability and responsiveness of forests to drought are immensely variable across biomes. Intraspecific tree responses to drought in species with wide niche breadths that grow across contrasting climatically environments might provide key information regarding forest resistance and changes in species distribution under climate change. Using a species with an exceptionally wide niche breath, we tested the hypothesis that tree populations thriving in dry environments are more resistant to drought than those growing in moist locations. METHODS: We determined temporal trends in tree radial growth of 12 tree populations of Nothofagus antarctica (Nothofagaceae) located across a sharp precipitation gradient (annual precipitation of 500-2000 mm) in Chile and Argentina. Using dendrochronological methods, we fitted generalized additive mixed-effect models to predict the annual basal area increment as a function of year and dryness (De Martonne aridity index). We also measured carbon and oxygen isotope signals (and estimated intrinsic water-use efficiency) to provide potential physiological causes for tree growth responses to drought. KEY RESULTS: We found unexpected improvements in growth during 1980-1998 in moist sites, while growth responses in dry sites were mixed. All populations, independent of site moisture, showed an increase in their intrinsic water-use efficiency in recent decades, a tendency that seemed to be explained by an increase in the photosynthetic rate instead of drought-induced stomatal closure, given that δ18O did not change with time. CONCLUSIONS: The absence of drought-induced negative effects on tree growth in a tree species with a wide niche breadth is promising because it might relate to the causal mechanisms tree species possess to face ongoing drought events. We suggest that the drought resistance of N. antarctica might be attributable to its low stature and relatively low growth rate.


Assuntos
Mudança Climática , Árvores , Árvores/fisiologia , Florestas , Carbono , Secas , Água
4.
Ecol Appl ; 31(4): e02285, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33423354

RESUMO

Unique combinations of geographic and environmental conditions make quantifying the importance of factors that influence forest productivity difficult. I aimed to model the height growth of dominant Nothofagus alpina trees in temperate forests of Chile, as a proxy for forest productivity, by building a dynamic model that accounts for topography, habitat type, and climate conditions. Using stem analysis data of 169 dominant trees sampled throughout south-central Chile (35°50' and 41°30' S), I estimated growth model parameters using a nonlinear mixed-effects framework that takes into account the hierarchical structure of the data. Based on the proposed model, I used a system-dynamics approach to analyze growth rates as a function of topographic, habitat type, and climatic variability. I found that the interaction between aspect, slope, and elevation, as well as the effect of habitat type, play an essential role in determining tree height growth rates of N. alpina. Furthermore, the precipitation in the warmest quarter, precipitation seasonality, and annual mean temperature are critical climatic drivers of forest productivity. Given a forecasted climate condition for the region by 2100, where precipitation seasonality and mean annual temperature increase by 10% and 1°C, respectively, and precipitation in the warmest quarter decreases by 10 mm, I predict a reduction of 1.4 m in height growth of 100-yr-old dominant trees. This study shows that the sensitivity of N. alpina-dominated forests to precipitation and temperature patterns could lead to a reduction of tree height growth rates as a result of climate change, suggesting a decrease in carbon sequestration too. By implementing a system dynamics approach, I provide a new perspective on climate-productivity relationships, bettering the quantitative understanding of forest ecosystem dynamics under climate change. The results highlight that while temperature rising might favor forest growth, the decreasing in both amount and distribution within a year of precipitation can be even more critical to reduce forest productivity.


Assuntos
Ecossistema , Florestas , Chile , Mudança Climática , Árvores
5.
Front Plant Sci ; 12: 777871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987531

RESUMO

Rootstocks modulate several characteristics of citrus trees, including vegetative growth, fruit yield and quality, and resistance or tolerance to pests, diseases, soil drought, and salinity, among other factors. There is a shortage of scion and rootstock cultivars among the combinations planted in Brazil. "Ponkan" mandarin and "Murcott" tangor grafted on "Rangpur" lime comprise the majority of the commercial mandarin orchards in Brazil. This low genetic diversity of citrus orchards can favor pest and disease outbreaks. This study aimed to evaluate the agronomic performance, Huanglongbing (HLB) tolerance, and fruit quality of "Emperor" mandarin on five different rootstocks for nine cropping seasons under the subtropical soil-climate conditions of the North region of the state of Paraná, Brazil. The experimental design was a randomized block, with six replications, two trees per block, and five rootstocks, including "Rangpur" lime, "Cleopatra," and "Sunki" mandarins, "Swingle" citrumelo, and "Fepagro C-13" citrange. The evaluations included tree growth, yield performance, fruit quality, and HLB disease incidence. "Emperor" mandarin trees grafted on "Rangpur" lime and "Swingle" citrumelo had early fruiting and high yield efficiency. "Rangpur" lime also induced the lowest tree growth, but low fruit quality. Trees on "Swingle" citrumelo and "Fepagro C-13" citrange showed low scion and rootstock affinity and produced fruits with high total soluble solids (TSS), with a lower number of seeds for those from trees on "Fepagro C-13" citrange. "Cleopatra" and "Sunki" mandarins induced higher juice content, while fruits from trees on "Cleopatra" also had higher TSS/titratable acidity (TA) ratio. "Emperor" mandarin trees were susceptible to HLB regardless of the rootstocks. Overall, "Cleopatra" and "Sunki" mandarins, "Swingle" citrumelo, and "Fepagro C-13" are more suitable rootstocks for "Emperor" mandarin under Brazilian subtropical conditions than "Rangpur" lime.

6.
Front Plant Sci ; 11: 905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733500

RESUMO

There is an ongoing debate on whether a drought induced carbohydrate limitation (source limitation) or a direct effect of water shortage (sink limitation) limit growth under drought. In this study, we investigated the effects of the two driest summers recorded in southern Chile in the last seven decades, on the growth and non-structural carbohydrates (NSC) concentrations of the slow-growing conifer Fitzroya cupressoides. Specifically, we studied the seasonal variation of NSC in saplings and adults one and two years after the occurrence of a 2 year-summer drought at two sites of contrasting precipitation and productivity (mesic-productive vs. rainy-less productive). We also evaluated radial growth before, during and after the drought, and predicted that drought could have reduced growth. If drought caused C source limitation, we expected that NSCs will be lower during the first than the second year after drought. Conversely, similar NSC concentrations between years or higher NSC concentrations in the first year would be supportive of sink limitation. Also, due to the lower biomass of saplings compared with adults, we expected that saplings should experience stronger seasonal NSC remobilization than adults. We confirmed this last expectation. Moreover, we found no significant growth reduction during drought in the rainy site and a slightly significant growth reduction at the mesic site for both saplings and adults. Across organs and in both sites and age classes, NSC, starch, and sugar concentrations were generally higher in the first than in the second year following drought, while NSC seasonal remobilization was generally lower. Higher NSC concentrations along with lower seasonal NSC remobilization during the first post-drought year are supportive of sink limitation. However, as these results were found at both sites while growth decreased slightly and just at the mesic site, limited growth only is unlikely to have caused NSC accumulation. Rather, these results suggest that the post-drought dynamics of carbohydrate storage are partly decoupled from the growth dynamics, and that the rebuild of C reserves after drought may be a priority in this species.

7.
Ecology ; 101(7): e03052, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32239762

RESUMO

Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding. Using these models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is increased, by competition across all individual trees). On both continents, tree basal area growth decreased with wood density and increased with tree size. Growth decreased with neighborhood crowding, which suggests that competition is important. Tree mortality decreased with wood density and generally increased with tree size, but was apparently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of competition was most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with greater reductions in growth occurring in forests with high basal area, but in Amazonia, the strength of competition also varied with plot-level wood density. In Amazonia, the strength of competition increased with water availability because of the greater basal area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was weakly related to soil fertility and invariant across the shorter water availability gradient. Overall, our results suggest that competition influences the structure and dynamics of tropical forests primarily through effects on individual tree growth rather than mortality and that the strength of competition largely depends on environment-mediated variation in basal area.


Assuntos
Florestas , Madeira , África , Brasil , Ecossistema , Clima Tropical
8.
Tree Physiol ; 39(4): 661-678, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649565

RESUMO

The carbon isotope composition (δ13C) in tree rings were used to derive the intrinsic water-use efficiency (iWUE) of Araucaria araucana trees of northern Patagonia along a strong precipitation gradient. It is well known that climatic and ontogenetic factors affect growth performance of this species but little is known about their influence in the physiological responses, as iWUE. Thus, the main objective of this study was to assess the physiological reactions of young and adult trees from two open xeric and two moderately dense mesic A. araucana forests to the increases in atmospheric CO2 (Ca) and air temperature during the 20th century, and to relate these responses with radial tree growth. The results indicated that the iWUE and the intercellular CO2 concentration (Ci) increased 33% and 32% in average during the last century, respectively, but carbon isotope discrimination (∆13C) was more variable between sites and age classes. Trees from xeric sites presented greater iWUE and lower ∆13C and Ci values than those from mesic sites. In general, iWUE was strongly related with Ca and was significantly affected by mean summer maximum temperature. ∆13C from mesic sites seemed to be mainly affected by summer maximum temperature, while trees from xeric conditions did not show any influence. Tree age also presented a significant effect on iWUE. Adult trees showed higher iWUE values than young trees, indicating an incidence of the tree age and/or height, mainly in closed mesic forests. Moreover, some trees presented positive relationships between iWUE and radial tree growth, while others presented negative or no relationships, indicating that other factors may negatively influence tree growth. Broadly, the results demonstrate the incidence of climatic, environmental and ontogenetic variability in the tree responses; however, more studies are needed to better understand which forests will be more affected by actual and future climate changes.


Assuntos
Dióxido de Carbono/metabolismo , Traqueófitas/fisiologia , Água/fisiologia , Isótopos de Carbono/análise , Mudança Climática , Espécies em Perigo de Extinção , Florestas , Estações do Ano , Temperatura , Traqueófitas/crescimento & desenvolvimento
9.
Ecology ; 99(12): 2844-2852, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30376160

RESUMO

Soil nutrients influence the distribution of tree species in lowland tropical forests, but their effect on productivity, especially at local scales, remains unclear. We used tree census, canopy occupancy, and soil data from the Barro Colorado Island (BCI; Panama) 50-ha forest dynamics plot to investigate the influence of soil nutrients and potential toxins on aboveground tree productivity. Growth was calculated as the increase in diameter of 150,000 individual stems ≥1 cm diameter at breast height, representing 207 species. The effects of soil variables and other strong predictors of growth (e.g., light) were estimated using hierarchical, linear, mixed-effects models. Growth was weakly positively associated with phosphorus (P), particularly for understory tree species that are typically considered to be limited by light. In contrast, growth was strongly negatively related to manganese (Mn) and aluminum (Al), although the latter effect was confounded by strong correlations between Al and other soil variables. The negative response to increasing Mn (and Al) suggests a toxicity effect due to solubilization and uptake of amorphous pools of metal oxides in the soil. These results show that P limits tropical tree growth at local scale on BCI, but that toxic metals represent an even greater constraint on productivity.


Assuntos
Solo , Árvores , Colorado , Florestas , Ilhas , Panamá , Clima Tropical
10.
Artigo em Inglês | MEDLINE | ID: mdl-30297467

RESUMO

Human-modified forests are an ever-increasing feature across the Amazon Basin, but little is known about how stem growth is influenced by extreme climatic events and the resulting wildfires. Here we assess for the first time the impacts of human-driven disturbance in combination with El Niño-mediated droughts and fires on tree growth and carbon accumulation. We found that after 2.5 years of continuous measurements, there was no difference in stem carbon accumulation between undisturbed and human-modified forests. Furthermore, the extreme drought caused by the El Niño did not affect carbon accumulation rates in surviving trees. In recently burned forests, trees grew significantly more than in unburned ones, regardless of their history of previous human disturbance. Wood density was the only significant factor that helped explain the difference in growth between trees in burned and unburned forests, with low wood-density trees growing significantly more in burned sites. Our results suggest stem carbon accumulation is resistant to human disturbance and one-off extreme drought events, and it is stimulated immediately after wildfires. However, these results should be seen with caution-without accounting for carbon losses, recruitment and longer-term changes in species composition, we cannot fully understand the impacts of drought and fire in the carbon balance of human-modified forests.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Nino on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Assuntos
Carbono/metabolismo , Secas , Incêndios , Florestas , Caules de Planta/química , Árvores/crescimento & desenvolvimento , Brasil , El Niño Oscilação Sul
11.
Breed Sci ; 68(3): 367-374, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30100804

RESUMO

We present an association analysis for seven key traits related to flowering, stem form and growth in Eucalyptus cladocalyx, a tree species suitable for low rainfall sites, using a long-term progeny trial with 49 open-pollinated maternal families in the southern Atacama Desert, Chile. The progeny trial was carried out in an arid environment with a mean annual rainfall of 152 mm. Simple sequence repeats (SSR) from a full consensus map of Eucalyptus were used for genotyping 245 individual trees. Twenty-three significant marker-trait associations were identified, explaining between 5.9 and 23.7% of the phenotypic variance. The marker EMBRA101 located on LG10 at 56.5 cM was concomitantly associated with diameter at breast height and tree height. Nine SSR were significantly associated with stem forking and stem straightness, explaining between 5.9 and 14.8% of the phenotypic variation. To our knowledge, this is the first study reporting a SSR-based association mapping analysis for stem form traits in Eucalyptus. These results provide novel and valuable information for understanding the genetic base of key traits in E. cladocalyx for breeding purposes under arid conditions.

12.
Proc Biol Sci ; 285(1876)2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29618550

RESUMO

Why tropical forests harbour an exceptional number of species with striking differences in abundances remains an open question. We propose a theoretical framework to address this question in which rare species may have different extirpation risks depending on species ranks in tree growth and sensitivities to neighbourhood interactions. To evaluate the framework, we studied tree growth and its responses to neighbourhood dissimilarity (ND) in traits and phylogeny for 146 species in a neotropical forest. We found that tree growth was positively related to ND, and common species were more strongly affected by ND than rare species, which may help delay dominance of common species. Rare species grew more slowly at the community-wide average ND than common species. But rare species grew faster when common species tended to dominate locally, which may help reduce extirpation risk of rare species. Our study highlights that tree growth rank among species depends on their responses to neighbourhood interactions, which can be important in fostering diversity maintenance in tropical forests.


Assuntos
Biodiversidade , Florestas , Árvores/crescimento & desenvolvimento , Teorema de Bayes , Panamá , Filogenia , Árvores/classificação , Clima Tropical
13.
Acta amaz. ; 48(1): 10-17, jan.-mar. 2018. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-17913

RESUMO

Planting of forest species of timber interest helps to reduce the deforestation pressure on the Amazon forest, promotes sustainable development of the producing region and generates ecological benefits. The objective of this work was to evaluate the survival rate and growth of four native (Swietenia macrophylla, Parkia decussata, Dipteryx odorata and Jacaranda copaia) and one exotic (Acacia mangium) species in monospecific plantations (spacing of 2 x 2 m) established on areas previously used for grazing, in Itacoatiara, State of Amazonas, Brazil. When the trees were four years old, we collected biometric data [height at 1.30 m (DBH, cm), crown projection area (CPA, m2), total height (Ht, m), commercial cylinder volume (Vcyl, m3 ha-1)], and qualitative data from visual diagnosis [survival rate (S, %), nutritional status (NS, G = good, D = deficient, %), and phytosanitary status (PS, S = satisfactory, N = non-satisfactory, %)]. Three plots of 128 m2, with 32 plants each, were evaluated for each species. Jacaranda copaia, followed by Dipteryx odorata and Parkia decussata, were the recommended species for planting in areas with edaphoclimatic conditions similar to those of the present work, due to their better performance according to most of the variables.(AU)


Plantios de espécies florestais de interesse madeireiro contribuem para diminuir a pressão sobre a floresta amazônica, proporcionam o desenvolvimento sustentável na região e geram benefícios ecológicos. Este estudo objetivou avaliar a sobrevivência e o crescimento de quatro espécies nativas (Swietenia macrophylla, Parkia decussata, Dipteryx odorata e Jacaranda copaia) e uma exótica (Acacia mangium), em plantios monoespecíficos (espaçamento de 2 x 2 m) estabelecidos em áreas anteriormente ocupadas por pastagem, em Itacoatiara, Amazonas. Aos quatro anos de idade, foram obtidos dados biométricos [diâmetro à altura de 1,30 m do solo (DBH, cm), área de projeção de copa (CPA, m2), altura total (Ht, m), volume comercial do cilindro (Vcyl, m3 ha-1)], e dados qualitativos obtidos por diagnose visual [taxa de sobrevivência (S; %), estado nutricional (NS, G: bom; D: deficiente; %) e estado fitossanitário (PS, S: satisfatório; NS: não-satisfatório; %). Para cada espécie considerou-se três parcelas de 128 m2, cada uma com 32 plantas. Jacaranda copaia, seguida de Dipteryx odorata e Parkia decussata, foram as espécies mais recomendadas para o plantio em áreas com condições edafoclimáticas semelhantes às do presente trabalho, devido ao seu melhor desempenho para a maioria das variáveis.(AU)


Assuntos
Florestas , Floresta Úmida , Árvores/crescimento & desenvolvimento , Brasil
14.
Acta amaz ; Acta amaz;48(1): 10-17, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-885982

RESUMO

ABSTRACT Planting of forest species of timber interest helps to reduce the deforestation pressure on the Amazon forest, promotes sustainable development of the producing region and generates ecological benefits. The objective of this work was to evaluate the survival rate and growth of four native (Swietenia macrophylla, Parkia decussata, Dipteryx odorata and Jacaranda copaia) and one exotic (Acacia mangium) species in monospecific plantations (spacing of 2 x 2 m) established on areas previously used for grazing, in Itacoatiara, State of Amazonas, Brazil. When the trees were four years old, we collected biometric data [height at 1.30 m (DBH, cm), crown projection area (CPA, m2), total height (Ht, m), commercial cylinder volume (Vcyl, m3 ha-1)], and qualitative data from visual diagnosis [survival rate (S, %), nutritional status (NS, G = good, D = deficient, %), and phytosanitary status (PS, S = satisfactory, N = non-satisfactory, %)]. Three plots of 128 m2, with 32 plants each, were evaluated for each species. Jacaranda copaia, followed by Dipteryx odorata and Parkia decussata, were the recommended species for planting in areas with edaphoclimatic conditions similar to those of the present work, due to their better performance according to most of the variables.


RESUMO Plantios de espécies florestais de interesse madeireiro contribuem para diminuir a pressão sobre a floresta amazônica, proporcionam o desenvolvimento sustentável na região e geram benefícios ecológicos. Este estudo objetivou avaliar a sobrevivência e o crescimento de quatro espécies nativas (Swietenia macrophylla, Parkia decussata, Dipteryx odorata e Jacaranda copaia) e uma exótica (Acacia mangium), em plantios monoespecíficos (espaçamento de 2 x 2 m) estabelecidos em áreas anteriormente ocupadas por pastagem, em Itacoatiara, Amazonas. Aos quatro anos de idade, foram obtidos dados biométricos [diâmetro à altura de 1,30 m do solo (DBH, cm), área de projeção de copa (CPA, m2), altura total (Ht, m), volume comercial do cilindro (Vcyl, m3 ha-1)], e dados qualitativos obtidos por diagnose visual [taxa de sobrevivência (S; %), estado nutricional (NS, G: bom; D: deficiente; %) e estado fitossanitário (PS, S: satisfatório; NS: não-satisfatório; %). Para cada espécie considerou-se três parcelas de 128 m2, cada uma com 32 plantas. Jacaranda copaia, seguida de Dipteryx odorata e Parkia decussata, foram as espécies mais recomendadas para o plantio em áreas com condições edafoclimáticas semelhantes às do presente trabalho, devido ao seu melhor desempenho para a maioria das variáveis.


Assuntos
Floresta Úmida , Agricultura Florestal
15.
Ecology ; 99(5): 1129-1138, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29460277

RESUMO

We present a meta-analysis of plant responses to fertilization experiments conducted in lowland, species-rich, tropical forests. We also update a key result and present the first species-level analyses of tree growth rates for a 15-yr factorial nitrogen (N), phosphorus (P), and potassium (K) experiment conducted in central Panama. The update concerns community-level tree growth rates, which responded significantly to the addition of N and K together after 10 yr of fertilization but not after 15 yr. Our experimental soils are infertile for the region, and species whose regional distributions are strongly associated with low soil P availability dominate the local tree flora. Under these circumstances, we expect muted responses to fertilization, and we predicted species associated with low-P soils would respond most slowly. The data did not support this prediction, species-level tree growth responses to P addition were unrelated to species-level soil P associations. The meta-analysis demonstrated that nutrient limitation is widespread in lowland tropical forests and evaluated two directional hypotheses concerning plant responses to N addition and to P addition. The meta-analysis supported the hypothesis that tree (or biomass) growth rate responses to fertilization are weaker in old growth forests and stronger in secondary forests, where rapid biomass accumulation provides a nutrient sink. The meta-analysis found no support for the long-standing hypothesis that plant responses are stronger for P addition and weaker for N addition. We do not advocate discarding the latter hypothesis. There are only 14 fertilization experiments from lowland, species-rich, tropical forests, 13 of the 14 experiments added nutrients for five or fewer years, and responses vary widely among experiments. Potential fertilization responses should be muted when the species present are well adapted to nutrient-poor soils, as is the case in our experiment, and when pest pressure increases with fertilization, as it does in our experiment. The statistical power and especially the duration of fertilization experiments conducted in old growth, tropical forests might be insufficient to detect the slow, modest growth responses that are to be expected.


Assuntos
Florestas , Clima Tropical , Nitrogênio , Panamá , Fósforo , Solo , Árvores
16.
Glob Chang Biol ; 24(1): 399-409, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28921844

RESUMO

Trait-response effects are critical to forecast community structure and biomass production in highly diverse tropical forests. Ecological theory and few observation studies indicate that trees with acquisitive functional traits would respond more strongly to higher resource availability than those with conservative traits. We assessed how long-term tree growth in experimental nutrient addition plots (N, P, and N + P) varied as a function of morphological traits, tree size, and species identity. We also evaluated how trait-based responses affected stand scale biomass production considering the community structure. We found that tree growth depended on interactions between functional traits and the type or combination of nutrients added. Common species with acquisitive functional traits responded more strongly to nutrient addition, mainly to N + P. Phosphorous enhanced the growth rates of species with acquisitive and conservative traits, had mostly positive effects on common species and neutral or negative effects in rare species. Moreover, trees receiving N + P grew faster irrespective of their initial size relative to trees in control or to trees in other treatment plots. Finally, species responses were highly idiosyncratic suggesting that community processes including competition and niche dimensionality may be altered under increased resource availability. We found no statistically significant effects of nutrient additions on aboveground biomass productivity because acquisitive species had a limited potential to increase their biomass, possibly due to their generally lower wood density. In contrast, P addition increased the growth rates of species characterized by more conservative resource strategies (with higher wood density) that were poorly represented in the plant community. We provide the first long-term experimental evidence that trait-based responses, community structure, and community processes modulate the effects of increased nutrient availability on biomass productivity in a tropical forest.


Assuntos
Florestas , Nitrogênio , Fósforo , Árvores/crescimento & desenvolvimento , Clima Tropical , Biomassa , Fenótipo , Madeira
17.
Braz. J. Biol. ; 76(4): 983-989, Oct.-Dec. 2016. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-21540

RESUMO

Individual leaf area (LA) is a key variable in studies of tree ecophysiology because it directly influences light interception, photosynthesis and evapotranspiration of adult trees and seedlings. We analyzed the leaf dimensions (length L and width W) of seedlings and adults of seven Neotropical rainforest tree species (Brosimum rubescens, Manilkara maxima, Pouteria caimito, Pouteria torta, Psidium cattleyanum, Symphonia globulifera and Tabebuia stenocalyx) with the objective to test the feasibility of single regression models to estimate LA of both adults and seedlings. In southern Bahia, Brazil, a first set of data was collected between March and October 2012. From the seven species analyzed, only two (P. cattleyanum and T. stenocalyx) had very similar relationships between LW and LA in both ontogenetic stages. For these two species, a second set of data was collected in August 2014, in order to validate the single models encompassing adult and seedlings. Our results show the possibility of development of models for predicting individual leaf area encompassing different ontogenetic stages for tropical tree species. The development of these models was more dependent on the species than the differences in leaf size between seedlings and adults.(AU)


Área foliar individual (AF) é uma variável chave em estudos sobre a ecofisiologia de arbóreas, porque influencia diretamente a interceptação de luz, a fotossíntese e a evapotranspiração das árvores adultas e das mudas. Foram analisadas as dimensões foliares (comprimento - C e largura - L) de indivíduos adultos e de mudas de sete espécies arbóreas de florestas neotropicais (Brosimum rubescens, Manilkara maxima, Pouteria caimito, Pouteria torta, Psidium cattleyanum, Symphonia globulifera e Tabebuia stenocalyx), com o objetivo de testar a viabilidade de modelos de regressão linear para estimar a AF de indivíduos adultos e mudas. No sul da Bahia, Brasil, um primeiro conjunto de dados foi coletado entre março e outubro de 2012. A partir das sete espécies analisadas, apenas duas (P. cattleyanum e T. stenocalyx) apresentaram relações muito semelhantes entre e AF e CL, em ambos os estádios ontogenéticos. Para estas duas espécies, um segundo conjunto de dados foi coletado em agosto de 2014, a fim de validar os modelos únicos que englobam folhas de indivíduos adultos e mudas. Nossos resultados mostram a possibilidade de desenvolvimento de modelos para a predição da área foliar, abrangendo diferentes estádios ontogenéticos para espécies arbóreas tropicais. O desenvolvimento destes modelos foi mais dependente das espécies do que das diferenças entre o tamanho das folhas de mudas e de indivíduos adultos.(AU)


Assuntos
Árvores , Folhas de Planta , Análise de Regressão , Floresta Úmida , Fotossíntese , Evapotranspiração , Brasil
18.
Braz. j. biol ; Braz. j. biol;76(4): 983-989, Oct.-Dec. 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-828110

RESUMO

Abstract Individual leaf area (LA) is a key variable in studies of tree ecophysiology because it directly influences light interception, photosynthesis and evapotranspiration of adult trees and seedlings. We analyzed the leaf dimensions (length – L and width – W) of seedlings and adults of seven Neotropical rainforest tree species (Brosimum rubescens, Manilkara maxima, Pouteria caimito, Pouteria torta, Psidium cattleyanum, Symphonia globulifera and Tabebuia stenocalyx) with the objective to test the feasibility of single regression models to estimate LA of both adults and seedlings. In southern Bahia, Brazil, a first set of data was collected between March and October 2012. From the seven species analyzed, only two (P. cattleyanum and T. stenocalyx) had very similar relationships between LW and LA in both ontogenetic stages. For these two species, a second set of data was collected in August 2014, in order to validate the single models encompassing adult and seedlings. Our results show the possibility of development of models for predicting individual leaf area encompassing different ontogenetic stages for tropical tree species. The development of these models was more dependent on the species than the differences in leaf size between seedlings and adults.


Resumo Área foliar individual (AF) é uma variável chave em estudos sobre a ecofisiologia de arbóreas, porque influencia diretamente a interceptação de luz, a fotossíntese e a evapotranspiração das árvores adultas e das mudas. Foram analisadas as dimensões foliares (comprimento - C e largura - L) de indivíduos adultos e de mudas de sete espécies arbóreas de florestas neotropicais (Brosimum rubescens, Manilkara maxima, Pouteria caimito, Pouteria torta, Psidium cattleyanum, Symphonia globulifera e Tabebuia stenocalyx), com o objetivo de testar a viabilidade de modelos de regressão linear para estimar a AF de indivíduos adultos e mudas. No sul da Bahia, Brasil, um primeiro conjunto de dados foi coletado entre março e outubro de 2012. A partir das sete espécies analisadas, apenas duas (P. cattleyanum e T. stenocalyx) apresentaram relações muito semelhantes entre e AF e CL, em ambos os estádios ontogenéticos. Para estas duas espécies, um segundo conjunto de dados foi coletado em agosto de 2014, a fim de validar os modelos únicos que englobam folhas de indivíduos adultos e mudas. Nossos resultados mostram a possibilidade de desenvolvimento de modelos para a predição da área foliar, abrangendo diferentes estádios ontogenéticos para espécies arbóreas tropicais. O desenvolvimento destes modelos foi mais dependente das espécies do que das diferenças entre o tamanho das folhas de mudas e de indivíduos adultos.


Assuntos
Árvores/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Floresta Úmida , Brasil , Análise de Regressão , Modelos Teóricos
19.
Ecol Evol ; 5(16): 3299-311, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26380665

RESUMO

Novel forests (NFs)-forests that contain a combination of introduced and native species-are a consequence of intense anthropogenic disturbances and the natural resilience of disturbed ecosystems. The extent to which NFs have similar forest function as comparable native secondary forests is a matter of debate in the scientific community. Little is known about the performance of individual species in those forests. This study focuses on the functional attributes of Castilla elastica NFs in Puerto Rico and on the differences between introduced and native species growing side by side in these forests. Rates of processes measured here were later compared with data from literature about NSFs. I hypothesize that juvenile plants of C. elastica in NFs have higher survival rate than those of native species and that C. elastica trees have faster biomass fluxes than native trees. To test the hypotheses, I measured survival rates of juvenile plants and tree growth and characterized the aboveground litter fluxes and storage. Although juvenile plants of native species displayed higher survival rates than those of C. elastica (53% vs. 28%), the latter was dominant in the understory (96%). Stand biomass growth rate was 2.0 ± 0.4 (average ± one standard deviation) Mg·ha(-1)·year(-1) for the whole forest, and Guarea guidonia, a native species, exhibited the highest tree growth. Total litter fall was 9.6 ± 0.5 Mg·ha(-1)·year(-1), and mean litter standing stock was 4.4 ± 0.1 Mg·ha(-1). Castilla elastica litter fall decomposed twice as fast as that of native species (5.8 ± 1.1 vs. 3.03 ± 1 k·year(-1)). Literature comparisons show that the present NFs differ in some rates of processes from NSFs. This study brings unique and detailed supporting data about the ecological dynamics under mature novel forest stands. Further comprehensive studies about NFs are important to strengthen the body of knowledge about the wide range of variation of emerging tropical ecosystems. Due to the large increase in the area covered by NFs, greater attention is needed to understand their functioning, delivery of ecological services and management requirements.

20.
Glob Chang Biol ; 21(10): 3762-76, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25917997

RESUMO

The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate-vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2 -fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest-stand level, but insights into species-specific growth changes - that ultimately determine community-level responses - are lacking. Here, we analyse species-specific growth changes on a centennial scale, using growth data from tree-ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size-class isolation) growth-trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8-10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large-scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous predictions of carbon dynamics of tropical forest under climate change.


Assuntos
Florestas , Árvores/crescimento & desenvolvimento , Bolívia , Camarões , Mudança Climática , Tailândia , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA