Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PeerJ ; 12: e17877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131614

RESUMO

Background: Plants allocate resources to growth, defense, and stress resistance, and resource availability can affect the balance between these allocations. Allocation patterns are well-known to differ among species, but what controls possible intra-specific trade-offs and if variation in growth vs. defense potentially evolves in adaptation to resource availability. Methods: We measured growth and defense in a provenance trial of rubber trees (Hevea brasiliensis) with clones originating from the Amazon basin. To test hypotheses on the allocation to growth vs. defense, we relate biomass growth and latex production to wood and leaf traits, to climate and soil variables from the location of origin, and to the genetic relatedness of the Hevea clones. Results: Contrary to expectations, there was no trade-off between growth and defense, but latex yield and biomass growth were positively correlated, and both increased with tree size. The absence of a trade-off may be attributed to the high resource availability in a plantation, allowing trees to allocate resources to both growth and defense. Growth was weakly correlated with leaf traits, such as leaf mass per area, intrinsic water use efficiency, and leaf nitrogen content, but the relative investment in growth vs. defense was not associated with specific traits or environmental variables. Wood and leaf traits showed clinal correlations to the rainfall and soil variables of the places of origin. These traits exhibited strong phylogenetic signals, highlighting the role of genetic factors in trait variation and adaptation. The study provides insights into the interplay between resource allocation, environmental adaptations, and genetic factors in trees. However, the underlying drivers for the high variation of latex production in one of the commercially most important tree species remains unexplained.


Assuntos
Hevea , Látex , Folhas de Planta , Hevea/genética , Hevea/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Látex/metabolismo , Biomassa , Madeira/genética , Filogenia , Especificidade da Espécie
2.
Eur J Health Econ ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982011

RESUMO

BACKGROUND: In many countries, methods of economic evaluation and Health Technology Assessment are used to inform healthcare resource allocation decisions. These approaches often require EQ-5D health outcomes measures. This study aimed to create an EQ-5D-3L value set for Bermuda from which EQ-5D-5L Crosswalk values could be obtained. METHODS: Respondents in Bermuda were recruited locally. A team of Trinidad-based interviewers with prior EQ-5D-3L valuation experience conducted valuation interviews on-line using the EQ-VT protocol. Respondents completed composite time-trade off (cTTO) and discrete choice experiment (DCE) tasks. A hybrid model that included both the cTTO and DCE data was estimated. An EQ-5D-5L crosswalk value set was then created from the EQ-5D-3L index values. Coefficients in the resulting crosswalk model were compared with those of crosswalk and valuation studies from other countries. RESULTS: The valuation tasks were completed by a near-representative sample of 366 adult Bermuda citizens. Half of the respondents reported being in state 11111. The lowest EQ VAS and EQ-5D-3L index values were 20 and - 0.120 respectively. The hybrid model produced all logically consistent and statistically significant coefficients that in turn produced index values that were very similar to those obtained in a preliminary model (MAD of 0.027). DISCUSSION: The on-line EQ-VT valuation study was successfully conducted in Bermuda and the values therein can now be used for economic analysis in Bermuda. The Bermuda values differed considerably from those of the other countries against which they were compared. Challenges were encountered with recruitment for an on-line survey in a small population.

3.
J Plant Res ; 137(5): 879-892, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39014142

RESUMO

Plant biomass allocation is mainly affected by the environment where each individual grows. In this sense, through the rapid global expansion of impermeable areas, urbanization has strong, albeit poorly understood, consequences on the biomass allocation of plants found in this environment. Nevertheless, the comprehension of biomass allocation processes in urban shrubs remains unclear, because most studies of urban ecology focus on tree species. This is an important gap of knowledge because a great part of urban vegetation is composed of shrubs and their association with trees have positive impacts in urban ecosystem services. In this study, we explored the ecological and potential selective pressure effects of an urbanization gradient on the biomass allocation patterns of aboveground organs of Turnera subulata, a widely distributed tropical shrub. We have demonstrated that, for certain reproductive organs, biomass allocation decreases in locations with higher urbanization. Unlike expected, the biomass of vegetative organs was not affected by urbanization, and we did not observe any effect of urbanization intensity on the variance in biomass allocation to vegetative and reproductive organs. We did not record urbanization-mediated trade-offs in biomass allocation for reproductive and vegetative organs. Instead, the biomass of these structures showed a positive relationship. Our data suggest that urbanization does not result in radical changes in biomass allocation of T. subulata, and neither in the variation of these traits. They indicate that the ability of T. subulata to thrive in urban environments may be associated with life history and morphological mechanisms. Our findings contribute to the understanding of shrub plant responses to urbanization and highlight urbanization as a potential factor in resource allocation differences for different structures and functions in plants living in these environments.


Assuntos
Biomassa , Turnera , Urbanização , Turnera/fisiologia , Turnera/crescimento & desenvolvimento , Clima Tropical , Ecossistema
4.
Ann Bot ; 134(2): 337-350, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721801

RESUMO

BACKGROUND AND AIMS: Lianas have higher relative abundance and biomass in drier seasonal forests than in rainforests, but whether this difference is associated with their hydraulic strategies is unclear. Here, we investigate whether lianas of seasonally dry forests are safer and more efficient in water transport than rainforest lianas, explaining patterns of liana abundance. METHODS: We measured hydraulic traits on five pairs of congeneric lianas of the tribe Bignonieae in two contrasting forest sites: the wet 'Dense Ombrophilous Forest' in Central Amazonia (~2 dry months) and the drier 'Semideciduous Seasonal Forest' in the inland Atlantic Forest (~6 dry months). We also gathered a broader database, including 197 trees and 58 liana species from different tropical forests, to compare hydraulic safety between habits and forest types. KEY RESULTS: Bignonieae lianas from both forests had high and similar hydraulic efficiency but exhibited variability in resistance to embolism across forest types when phylogenetic relationships were taken into account. Three genera had higher hydraulic safety in the seasonal forest than in the rainforest, but species across both forests had similar positive hydraulic safety margins despite lower predawn water potential values of seasonal forest lianas. We did not find the safety-efficiency trade-off. Merging our results with previously published data revealed a high variability of resistance to embolism in both trees and lianas, independent of forest types. CONCLUSIONS: The high hydraulic efficiency of lianas detected here probably favours their rapid growth across tropical forests, but differences in hydraulic safety highlight that some species are highly vulnerable and may rely on other mechanisms to cope with drought. Future research on the lethal dehydration threshold and the connection between hydraulic resistance strategies and liana abundance could offer further insights into tropical forest dynamics under climatic threats.


Assuntos
Floresta Úmida , Estações do Ano , Clima Tropical , Florestas , Água/fisiologia , Bignoniaceae/fisiologia , Árvores/fisiologia , Brasil
5.
Neotrop Entomol ; 53(3): 641-646, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38329711

RESUMO

In holometabolous insects, the immature or larval stage is characterized by a high rate of food consumption. The nutrients obtained from which are directed towards the maintenance of metabolism, growth, pupation, and metamorphosis. However, when resources are scarce, the lack thereof can affect the growth rate and compromise the metamorphosis and formation of adults. Do increased energy expenditures yield outcomes similar to those resulting from restricted food intake during the larval stage? We hypothesized that removing the wax layer from the larvae of the ladybird Cryptolaemus montrouzieri Mulsant, 1850 would result in increased energy expenditure, which can compromise both larval growth and adult size. We compared the development time, feeding rate, and adult size of larvae with an intact wax layer, and those with constantly removed wax layers. We found that the production of the wax layer was continuous. Unlike the waxed larvae, the larvae of C. montrouzieri extended their development time in response to energy depletion through wax removal. The total number of mealybugs consumed by waxless larvae was higher than the total number consumed by waxed larvae; however, the daily consumption of waxless larvae was lower than that of waxed larvae. Furthermore, the adults of waxless larvae were smaller than those whose larvae had intact wax layers. This suggests that the cost associated with wax layer secretion is a pivotal factor in larval growth. Removing this layer does not get compensated by increased larval feeding or extended development time.


Assuntos
Besouros , Larva , Ceras , Animais , Besouros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Ceras/metabolismo , Metabolismo Energético , Comportamento Alimentar , Metamorfose Biológica
6.
Pest Manag Sci ; 80(4): 1949-1956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38088471

RESUMO

BACKGROUND: Facultative bacterial endosymbionts have the potential to influence the interactions between aphids, their natural enemies, and host plants. Among the facultative symbionts found in populations of the grain aphid Sitobion avenae in central Chile, the bacterium Regiella insecticola is the most prevalent. In this study, we aimed to investigate whether infected and cured aphid lineages exhibit differential responses to wheat cultivars containing varying levels of the benzoxazinoid DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), which is a xenobiotic compound produced by plants. Specifically, we examined the reproductive performance responses of the most frequently encountered genotypes of Sitobion avenae when reared on wheat seedlings expressing low, medium, and high concentrations of DIMBOA. RESULTS: Our findings reveal that the intrinsic rate of population increase (rm ) in cured lineages of Sitobion avenae genotypes exhibits a biphasic pattern, characterized by the lowest rm and an extended time to first reproduction on wheat seedlings with medium levels of DIMBOA. In contrast, the aphid genotypes harbouring Regiella insecticola display idiosyncratic responses, with the two most prevalent genotypes demonstrating improved performance on seedlings featuring an intermediate content of DIMBOA compared to their cured counterparts. CONCLUSION: This study represents the first investigation into the mediating impact of facultative endosymbionts on aphid performance in plants exhibiting varying DIMBOA contents. These findings present exciting prospects for identifying novel targets for aphid control by manipulating the presence of aphid symbionts. © 2023 Society of Chemical Industry.


Assuntos
Afídeos , Benzoxazinas , Animais , Afídeos/fisiologia , Triticum , Reprodução , Enterobacteriaceae/genética , Bactérias
7.
Ann Entomol Soc Am, v. 8, n. 4, ixae019, jul. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5453

RESUMO

Animals exhibit a variety of strategies to avoid predation; spiders are no exception. We explored whether webbuilding spiders that differ in the architecture of their webs exhibit morphologies or behaviors suggestive of antipredator strategies that trade-off with the degree of protection offered by their webs. Spiders build webs of 3 types: the more protected tangles and sheet-and-tangles, which are three-dimensional (3D), and the more exposed orbs, which are two-dimensional (2D), both with or without a refuge. We hypothesize that spiders whose webs offer greater protection—a 3D architecture or a refuge—will be less likely to be armored or brightly colored when compared to spiders without these protections. We collected data on 446 spiders and their webs in 2 lowland tropical rainforest sites. We show that 2D web builders with no refuges tended to be brightly colored (background contrasting) and spiny (spiky), whereas those with refuges tended to blend against the background of their refuges. 3D web builders, on the other hand, were neither cryptic nor brightly colored nor armored but were more likely to drop out of the web upon simulated predator contact. These results support the hypothesis that web-building spiders tend to be protected either through the architecture of their webs or their morphology and behavior, suggesting a trade-off between different types of antipredator strategies.

8.
Parasitol Res ; 123(1): 53, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100003

RESUMO

The reproductive mode of viviparity has independently evolved in various animal taxa. It refers to the condition in which the embryos or young develop inside the female's body during gestation, providing advantages such as protection, nutrition, and improved survival chances. However, parasites and diseases can be an evolutionary force that limit the host's resources, leading to physiological, morphological, and behavioral changes that impose additional costs on both the pregnant female and her offspring. This review integrates the primary literature published between 1980 and 2021 on the parasitism of viviparous hosts. We describe aspects such as reproductive investment in females, offspring sex ratios, lactation investment in mammals, alterations in birth intervals, current reproductive investment, variations between environments, immune system activity in response to immunological challenges, and other factors that can influence the interaction between viviparous females and parasites. Maintaining pregnancy incurs costs in managing the mother's resources and regulating the immune system's responses to the offspring, while simultaneously maintaining an adequate defense against parasites and pathogens. Parasites can significantly influence this reproductive mode: parasitized females adjust their investment in survival and reproduction based on their life history, environmental factors, and the diversity of encountered parasites.


Assuntos
Evolução Biológica , Vertebrados , Feminino , Animais , Gravidez , Lactação , Estado Nutricional , Reprodução , Mamíferos
9.
Plant Cell Environ ; 46(10): 3158-3169, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37309267

RESUMO

Plants inhabiting environments with stressful conditions often exhibit a low number of flowers, which can be attributed to the energetic cost associated with reproduction. One of the most stressful environments for plants is the Antarctic continent, characterized by limited soil water availability and low temperatures. Induction of dehydrins like those from the COR gene family and auxin transcriptional response repressor genes (IAAs), which are involved in floral repression, has been described in response to water stress. Here, we investigated the relationship between the water deficit-induced stress response and the number of flowers in Colobanthus quitensis plants collected from populations along a latitudinal gradient. The expression levels of COR47 and IAA12 genes in response to water deficit were found to be associated with the number of flowers. The relationship was observed both in the field and growth chambers. Watering the plants in the growth chambers alleviated the stress and stimualted flowering, thereby eliminating the trade-off observed in the field. Our study provides a mechanistic understanding of the ecological constraints on plant reproduction along a water availability gradient. However, further experiments are needed to elucidate the primary role of water availability in regulating resource allocation to reproduction in plants inhibiting extreme environments.


Assuntos
Resistência à Seca , Plantas , Regiões Antárticas , Reprodução , Temperatura Baixa
10.
J Math Biol ; 87(1): 10, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330418

RESUMO

Individual variability in dispersal and reproduction abilities can lead to evolutionary processes that may have significant effects on the speed and shape of biological invasions. Spatial sorting, an evolutionary process through which individuals with the highest dispersal ability tend to agglomerate at the leading edge of an invasion front, and spatial selection, spatially heterogeneous forces of selection, are among the fundamental evolutionary forces that can change range expansions. Most mathematical models for these processes are based on reaction-diffusion equations, i.e., time is continuous and dispersal is Gaussian. We develop novel theory for how evolution shapes biological invasions with integrodifference equations, i.e., time is discrete and dispersal can follow a variety of kernels. Our model tracks how the distribution of growth rates and dispersal ability in the population changes from one generation to the next in continuous space. We include mutation between types and a potential trade-off between dispersal ability and growth rate. We perform the analysis of such models in continuous and discrete trait spaces, i.e., we determine the existence of travelling wave solutions, asymptotic spreading speeds and their linear determinacy, as well as the population distributions at the leading edge. We also establish the relation between asymptotic spreading speeds and mutation probabilities. We observe conditions for when spatial sorting emerges and when it does not and also explore conditions where anomalous spreading speeds occur, as well as possible effects of deleterious mutations in the population.


Assuntos
Modelos Teóricos , Reprodução , Humanos , Dinâmica Populacional , Mutação , Viagem , Modelos Biológicos , Evolução Biológica
11.
Naturwissenschaften ; 110(4): 31, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37389663

RESUMO

Plant strategies against herbivores are classically divided into chemical, physical, biotic defences. However, little is known about the relative importance of each type of plant defence, especially in the same species. Using the myrmecophyte Triplaris americana (both with and without ants), and the congeneric non-myrmecophyte T. gardneriana, we tested whether ant defence is more effective than other defences of naturally ant-free myrmecophytes and the non-myrmecophyte congeneric species, all spatially co-occurring. In addition, we investigated how plant traits vary among plant groups, and how these traits modulate herbivory. We sampled data on leaf area loss and plant traits from these tree groups in the Brazilian Pantanal floodplain, and found that herbivory is sixfold lower in plants with ants than in ant-free plants, supporting a major role of biotic defences against herbivory. Whereas ant-free plants had more physical defences (sclerophylly and trichomes), they had little effect on herbivory-only sclerophylly modulated herbivory, but with opposite effects depending on ants' presence and species identity. Despite little variation in the chemicals among plant groups, tannin concentrations and δ13C signatures negatively affected herbivory in T. americana plants with ants and in T. gardneriana, respectively. We showed that ant defence in myrmecophytic systems is the most effective against herbivory, as the studied plants could not fully compensate the lack of this biotic defence. We highlight the importance of positive insect-plant interactions in limiting herbivory, and therefore potentially plant fitness.


Assuntos
Formigas , Árvores , Animais , Brasil , Herbivoria , Fenótipo
12.
Ann Bot ; 131(5): 885-896, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37004162

RESUMO

BACKGROUND AND AIMS: We examined the relationship between reproductive allocation and vegetative growth in three monoicous sexual systems of bryophytes. The sexual systems show a gradient of increasing distance between the sexes, from gonioautoicous to cladautoicous to rhizautoicous. Here, we investigated the following two hypotheses: (1) reproductive allocation differs between sexes and sexual systems, and male reproductive allocation increases with increasing distance between male and female gametangia; and (2) reproductive allocation is negatively related to vegetative growth. METHODS: We sampled the three sexual systems, represented by three moss species of the genus Fissidens in the Atlantic Forest of Southeastern Brazil. Ramets were washed in the laboratory; the reproductive structures were detached from the vegetative ramets and sorted regarding sex and individual, dried at 70 °C for 72 h, and weighed in an ultramicrobalance. We calculated the mean reproductive and vegetative mass and reproductive allocation and used generalized linear models to test our predictions. KEY RESULTS: Reproductive allocation differed between species and sexes. It was higher in the rhizautoicous than in the cladautoicous and gonioautoicous species. Mean reproductive allocation was greater in males than in females of the rhizautoicous species, greater in females than males of the cladautoicous species, and did not differ between the sexes in the gonioautoicous species. Estimates of reproductive and vegetative mass were positively related in females of the rhizautoicous species. Vegetative mass was not related to reproductive allocation in the gonioautoicous species, but negatively related to reproductive allocation in the male and female branchlets of the cladautoicous species and in the female ramets of the rhizautoicous species. CONCLUSIONS: The reproductive allocation patterns differ between the rhizautoicous species and the 'truly' monoicous species, with shorter intersexual distances, which implies that our hypotheses were supported only in part. We suggest that the hypotheses should be reformulated and tested further by comparing 'truly' monoicous species with dioicous species and by including other genera.


Assuntos
Briófitas , Bryopsida , Reprodução , Brasil , Florestas
13.
J Exp Bot ; 74(6): 1745-1750, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36651787

RESUMO

Aphids are important herbivorous insects that can cause significant crop damage, leading to yield reduction and economic loss. One avenue being explored to reduce aphid impacts is the development of aphid-resistant plants. Under projected climate scenarios, it is expected that plants will be exposed to greater biotic and abiotic stress, including increased herbivorous insect infestation and exposure to prolonged periods of environmental stress, particularly drought. In response to these projections, plant-aphid interactions under drought conditions have been a subject of growing interest; however, few studies have looked at the impact of drought stress on plant resistance to aphids despite the potential importance for plant breeding. Here, we examine the latest scientific advances regarding variation in plant resistance to aphids under drought, emphasizing underlying mechanisms and functional trade-offs and propose a conceptual model relating plant tolerance to drought with plant resistance to aphids.


Assuntos
Afídeos , Animais , Afídeos/fisiologia , Secas , Melhoramento Vegetal , Estresse Fisiológico , Herbivoria , Plantas
14.
Oecologia ; 201(2): 287-298, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36517619

RESUMO

Life-history traits, such as reproductive allocation, sexual expression, sex ratio, and reproductive success, are central aspects of a species' ecology and evolution. For example, bias in male and female sex expression may play a large role in determining the viability of populations in the face of environmental pressures, such as population fragmentation, climate change and habitat occupancy. Thus, in this study, we investigated reproductive traits in 10 meta-populations of Fissidens flaccidus Mitt. From each meta-population, 30 patches were randomly selected, and 1 cm2 samples were collected form each patch. A total of 20,173 ramets were analyzed and classified into male, non-sporophytic female, sporophytic female, and non-sex expressing. In addition, population density in each patch was quantified. Our results showed that relative reproductive allocation in perigonia and sporophytes is greater than perichaetia. Trade-off between sexual relative reproductive allocation and asexual gemma production was observed, suggesting an important role of female ramets in asexual reproduction. The number of male ramets does not influence the reproductive success observed in each patch, and ramet density may induce male sex expression. Thus, we concluded that reproductive allocation in male function is efficient, since fewer male ramets can assure a considerable reproductive success. Furthermore, our results suggest that there may be a habitat preference between the sexes, since male ramets are found in patches with high density and mostly below female ramets, suggesting an avoidance of direct sunlight by male ramets.


Assuntos
Características de História de Vida , Reprodução Assexuada , Feminino , Masculino , Humanos , Reprodução , Ecossistema
15.
Ecology ; 104(1): e3860, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36047784

RESUMO

Plant resistance includes mechanical and chemical defenses that reduce herbivory, whereas plant tolerance reduces the fitness impact of herbivory. Because defenses are costly and investing in both resistance and tolerance may be superfluous, trade-offs among them are expected. In forest ecosystems, the mechanical strengthening of leaves is linked both to shade adaptation and antiherbivore defenses, but it also compromises resource uptake, therefore limiting regrowth following damage, suggesting a trade-off between mechanical defenses and tolerance. We tested for the resistance-tolerance trade-off across 11 common tree species in a temperate rainforest and explored mechanistic explanations by measuring chemical and mechanical defenses. Herbivory damage was negatively associated with leaf toughness and fiber content, whereas there was no significant relationship between herbivory and secondary metabolites (flavonols, gallic acid, tannins, and terpenoids). We detected a resistance-tolerance trade-off, as expected. We found a negative relationship between mechanical defenses and tolerance, estimated as the survival ratio between experimentally damaged and undamaged seedlings. Tolerance and secondary metabolites showed no significant association. Results suggest that selective forces other than herbivory acting on defensive traits can favor a resistance-tolerance trade-off. Therefore, plant adaptation to contrasting light environments may contribute to the evolution of resistance-tolerance trade-offs.


Assuntos
Ecossistema , Herbivoria , Plantas , Árvores , Plântula , Folhas de Planta
16.
Front Immunol ; 14: 1286831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38170025

RESUMO

The immune system is a network of molecules, signaling pathways, transcription, and effector modulation that controls, mitigates, or eradicates agents that may affect the integrity of the host. In mosquitoes, the innate immune system is highly efficient at combating foreign organisms but has the capacity to tolerate vector-borne diseases. These implications lead to replication, dissemination, and ultimately the transmission of pathogenic organisms when feeding on a host. In recent years, it has been discovered that the innate immune response of mosquitoes can trigger an enhanced immunity response to the stimulus of a previously encountered pathogen. This phenomenon, called immune priming, is characterized by a molecular response that prevents the replication of viruses, parasites, or bacteria in the body. It has been documented that immune priming can be stimulated through homologous organisms or molecules, although it has also been documented that closely related pathogens can generate an enhanced immune response to a second stimulus with a related organism. However, the cost involved in this immune response has not been characterized through the transmission of the immunological experience from parents to offspring by transgenerational immune priming (TGIP) in mosquitoes. Here, we address the impact on the rates of oviposition, hatching, development, and immune response in Aedes aegypti mosquitoes, the mothers of which were stimulated with dengue virus serotypes 2 and/or 4, having found a cost of TGIP on the development time of the progeny of mothers with heterologous infections, with respect to mothers with homologous infections. Our results showed a significant effect on the sex ratio, with females being more abundant than males. We found a decrease in transcripts of the siRNA pathway in daughters of mothers who had been exposed to an immune challenge with DV. Our research demonstrates that there are costs and benefits associated with TGIP in Aedes aegypti mosquitoes exposed to DV. Specifically, priming results in a lower viral load in the offspring of mothers who have previously been infected with the virus. Although some results from tests of two dengue virus serotypes show similarities, such as the percentage of pupae emergence, there are differences in the percentage of adult emergence, indicating differences in TGIP costs even within the same virus with different serotypes. This finding has crucial implications in the context of dengue virus transmission in endemic areas where multiple serotypes circulate simultaneously.


Assuntos
Aedes , Vírus da Dengue , Dengue , Masculino , Feminino , Animais , Humanos , Sorogrupo , Mosquitos Vetores , Replicação Viral/fisiologia
17.
Dental press j. orthod. (Impr.) ; 28(2): e2321238, 2023. tab
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1439993

RESUMO

ABSTRACT Objective: To study the feasibility of time trade-off (TTO) method in quantifying health utility ratings in different types of malocclusion. Material and Methods: In this cross-sectional study, 70 orthodontic patients aged 18 years or above, reporting for treatment/consultation, were included and interviewed. Malocclusion-related health utilities were assessed through the TTO method, and oral health-related quality of life was measured with the help of Orthognathic Quality of Life Questionnaire (OQLQ). Angle's classification of malocclusion was recorded. Bivariate analyses and multivariate Poisson's regression were done to find out an association between the oral health utility values, OQLQ and demographic and clinical characteristics. Results: Patients with skeletal Class III malocclusion had lower health utility values than those with Class I and Class II malocclusions (p=0.013). Poisson's regression showed that Angle's Class II division 1 (0.90, CI 0.84 to 0.97), Class III (0.68, CI 0.59 to 0.95) and Skeletal malocclusion (0.79, CI 0.71 to 0.87) and OQLQ scores (1.0, CI 1 to 1.003) were found to be significant predictors of TTO utility scores. Conclusions: TTO utilities were found to be valid and well correlated with clinical findings. Health utilities could serve as useful and reliable markers of health-related quality of life (HRQL) among individuals or communities and help cost-effective preventive or intervention programs planning.


RESUMO Objetivo: Estudar a viabilidade do método Time trade-off (TTO) para quantificar escores de valoração da saúde em diferentes tipos de má oclusão. Material e Métodos: Neste estudo transversal, foram incluídos e entrevistados 70 pacientes ortodônticos com idade igual ou superior a 18 anos, que compareceram para tratamento/consulta. A valoração da saúde em relação à má oclusão foi avaliada por meio do método TTO e a qualidade de vida relacionada à saúde bucal foi medida com a ajuda do Questionário de Qualidade de Vida Ortognática (Orthognathic Quality of Life Questionnaire, OQLQ). A classificação da má oclusão segundo Angle foi registrada, e análises bivariadas e regressão multivariada de Poisson foram feitas para verificar qualquer associação entre os escores de valoração da saúde bucal, OQLQ e características demográficas e clínicas. Resultados: Os pacientes com má oclusão esquelética de Classe III apresentaram escores de valoração da saúde mais baixos do que aqueles com má oclusão de Classe I e Classe II (p=0,013). A regressão de Poisson mostrou que a Classe II de Angle divisão 1 (0,90, IC 0,84 a 0,97), Classe III (0,68, IC 0,59 a 0,95), má oclusão esquelética (0,79, IC 0,71 a 0,87) e os escores do OQLQ (1,0, IC 1 a 1,003) foram considerados preditores significativos dos escores de valoração pelo método TTO. Conclusões: Os escores do TTO foram considerados válidos e bem correlacionados com os achados clínicos, e podem servir como marcadores úteis e confiáveis da qualidade de vida relacionada à saúde (health-related quality of life, HRQL) entre indivíduos ou comunidades, e ajudar no planejamento de programas de prevenção ou de intervenção, com uma boa relação custo-benefício.

18.
BMC Biol ; 20(1): 262, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36447225

RESUMO

BACKGROUND: During range expansion in spatially distributed habitats, organisms differ from one another in terms of their patterns of localization versus propagation. To exploit locations or explore the landscape? This is the competition-colonization trade-off, a dichotomy at the core of ecological succession. In bacterial communities, this trade-off is a fundamental mechanism towards understanding spatio-temporal fluxes in microbiome composition. RESULTS: Using microfluidics devices as structured bacterial habitats, we show that, in a synthetic two-species community of motile strains, Escherichia coli is a fugitive species, whereas Pseudomonas aeruginosa is a slower colonizer but superior competitor. We provide evidence highlighting the role of succession and the relevance of this trade-off in the community assembly of bacteria in spatially distributed patchy landscapes. Furthermore, aggregation-dependent priority effects enhance coexistence which is not possible in well-mixed environments. CONCLUSIONS: Our findings underscore the interplay between micron-scale landscape structure and dispersal in shaping biodiversity patterns in microbial ecosystems. Understanding this interplay is key to unleash the technological revolution of microbiome applications.


Assuntos
Infecções por Escherichia coli , Microbiota , Humanos , Biodiversidade , Escherichia coli , Pseudomonas aeruginosa
20.
J Fish Biol ; 101(1): 236-248, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35591772

RESUMO

Coevolution with predators leads to the use of low-risk habitats by many prey species, which promotes survival during early developmental phases. These nurseries are valued by conservation and management agencies because of their contributions to adult populations. However, the physical and geographic characteristics, like shallow depths and isolation from other marine habitats, that restrict access to predators and thereby reduce risk to juvenile animals can also limit scientific research. Consequently, many nursery habitats are still unidentified and understudied. Here we used gillnet monitoring from 1982 to 2018 to delineate blacktip shark (Carcharhinus limbatus) nurseries in the north-western Gulf of Mexico and elucidated their physical, environmental and biological characteristics. Nursery habitats within estuaries (<2% of spatial area) were proximate to the Gulf of Mexico and exhibited significantly lower variability in salinity than non-nurseries. However, relative abundances of predators and prey were not significant delineators of nursery habitats. As such, food and risk may not influence juvenile blacktip habitat use as expected. Alternatively, reduced osmoregulatory stress attributed to predictable environments likely provides advantageous conditions for blacktips to develop foraging and antipredator tactics, which is vital prior to the winter migration of juvenile sharks into the Gulf of Mexico.


Assuntos
Tubarões , Animais , Ecossistema , Estuários , Golfo do México , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA