RESUMO
BACKGROUND: Animal poisons and venoms are sources of biomolecules naturally selected. Rhinella schneideri toads are widespread in the whole Brazilian territory and they have poison glands and mucous gland. Recently, protein from toads' secretion has gaining attention. Frog skin is widely known to present great number of host defense peptides and we hypothesize toads present them as well. In this study, we used a RNA-seq analysis from R. schneideri skin and biochemical tests with the gland secretion to unravel its protein molecules. METHODS: Total RNA from the toad skin was extracted using TRizol reagent, sequenced in duplicate using Illumina Hiseq2500 in paired end analysis. The raw reads were trimmed and de novo assembled using Trinity. The resulting sequences were submitted to functional annotation against non-redundant NCBI database and Database of Anuran Defense Peptide. Furthermore, we performed caseinolytic activity test to assess the presence of serine and metalloproteases in skin secretion and it was fractionated by fast liquid protein chromatography using a reverse-phase column. The fractions were partially sequenced by Edman's degradation. RESULTS: We were able to identify several classes of antimicrobial peptides, such as buforins, peroniins and brevinins, as well as PLA2, lectins and galectins, combining protein sequencing and RNA-seq analysis for the first time. In addition, we could isolate a PLA2 from the skin secretion and infer the presence of serine proteases in cutaneous secretion. CONCLUSIONS: We identified novel toxins and proteins from R. schneideri mucous glands. Besides, this is a pioneer study that presented the in depth characterization of protein molecules richness from this toad secretion. The results obtained herein showed evidence of novel AMP and enzymes that need to be further explored.
RESUMO
Background: Animal poisons and venoms are sources of biomolecules naturally selected. Rhinella schneideri toads are widespread in the whole Brazilian territory and they have poison glands and mucous gland. Recently, protein from toads secretion has gaining attention. Frog skin is widely known to present great number of host defense peptides and we hypothesize toads present them as well. In this study, we used a RNA-seq analysis from R. schneideri skin and biochemical tests with the gland secretion to unravel its protein molecules. Methods: Total RNA from the toad skin was extracted using TRizol reagent, sequenced in duplicate using Illumina Hiseq2500 in paired end analysis. The raw reads were trimmed and de novo assembled using Trinity. The resulting sequences were submitted to functional annotation against non-redundant NCBI database and Database of Anuran Defense Peptide. Furthermore, we performed caseinolytic activity test to assess the presence of serine and metalloproteases in skin secretion and it was fractionated by fast liquid protein chromatography using a reverse-phase column. The fractions were partially sequenced by Edman's degradation. Results: We were able to identify several classes of antimicrobial peptides, such as buforins, peroniins and brevinins, as well as PLA2, lectins and galectins, combining protein sequencing and RNA-seq analysis for the first time. In addition, we could isolate a PLA2 from the skin secretion and infer the presence of serine proteases in cutaneous secretion. Conclusions: We identified novel toxins and proteins from R. schneideri mucous glands. Besides, this is a pioneer study that presented the in depth characterization of protein molecules richness from this toad secretion. The results obtained herein showed evidence of novel AMP and enzymes that need to be further explored.(AU)
Assuntos
Animais , Bufonidae , Venenos de Anfíbios/análise , Venenos de Anfíbios/sangue , Venenos de Anfíbios/genética , Secreções Corporais/química , Sequência de Bases , TranscriptomaRESUMO
Animal poisons and venoms are sources of biomolecules naturally selected. Rhinella schneideri toads are widespread in the whole Brazilian territory and they have poison glands and mucous gland. Recently, protein from toads' secretion has gaining attention. Frog skin is widely known to present great number of host defense peptides and we hypothesize toads present them as well. In this study, we used a RNA-seq analysis from R. schneideri skin and biochemical tests with the gland secretion to unravel its protein molecules. Methods: Total RNA from the toad skin was extracted using TRizol reagent, sequenced in duplicate using Illumina Hiseq2500 in paired end analysis. The raw reads were trimmed and de novo assembled using Trinity. The resulting sequences were submitted to functional annotation against non-redundant NCBI database and Database of Anuran Defense Peptide. Furthermore, we performed caseinolytic activity test to assess the presence of serine and metalloproteases in skin secretion and it was fractionated by fast liquid protein chromatography using a reverse-phase column. The fractions were partially sequenced by Edman's degradation. Results: We were able to identify several classes of antimicrobial peptides, such as buforins, peroniins and brevinins, as well as PLA2, lectins and galectins, combining protein sequencing and RNA-seq analysis for the first time. In addition, we could isolate a PLA2 from the skin secretion and infer the presence of serine proteases in cutaneous secretion. Conclusions: We identified novel toxins and proteins from R. schneideri mucous glands. Besides, this is a pioneer study that presented the in depth characterization of protein molecules richness from this toad secretion. The results obtained herein showed evidence of novel AMP and enzymes that need to be further explored.(AU)
Assuntos
Anuros/fisiologia , Venenos , Metaloproteases , Serina Proteases , Secreções Corporais , Análise de Sequência de ProteínaRESUMO
Amphibians present pharmacologically active aliphatic, aromatic and heterocyclic molecules in their skin as defense against microorganisms, predators and infections, such as steroids, alkaloids, biogenic amines, guanidine derivatives, proteins and peptides. Based on the discovered bioactive potential of bufadienolides, this work reviewed the contribution of amphibians, especially from members of Bufonidae family, as source of new cytotoxic and antitumor molecules, highlighting the mechanisms responsible for such amazing biological potentialities. Bufonidae species produce bufadienolides related to cholesterol through the mevalonate-independent and acidic bile acid pathways as polyhydroxy steroids with 24 carbons. In vitro antitumor studies performed with skin secretions and its isolated components (specially marinobufagin, telocinobufagin, bufalin and cinobufagin) from Rhinella, Bufo and Rhaebo species have shown remarkable biological action on hematological, solid, sensitive and/or resistant human tumor cell lines. Some compounds revealed higher selectivity against neoplastic lines when compared to dividing normal cells and some molecules may biochemically associate with Na+/K+-ATPase and there is structural similarity to the digoxin- and ouabain-Na+/K+-ATPase complexs, implying a similar mechanism of the Na+/K+-ATPase inhibition by cardenolides and bufadienolides. Some bufadienolides also reduce levels of antiapoptotic proteins and DNA synthesis, cause morphological changes (chromatin condensation, nuclear fragmentation, cytoplasm shrinkage, cytoplasmic vacuoles, stickiness reduction and apoptotic bodies), cell cycle arrest in G2/M or S phases, mitochondrial depolarization, PARP [poly (ADPribose) polymerase] and Bid cleavages, cytochrome c release, activation of Bax and caspases (-3, -9, -8 and -10), increased expression of the Fas-Associated protein with Death Domain (FADD), induce topoisomerase II inhibition, DNA fragmentation, cell differentiation, angiogenesis inhibition, multidrug resistance reversion, and also regulate immune responses. Then, bufadienolides isolated from amphibians, some of them at risk of extinction, emerge as a natural class of incredible chemical biodiversity, has moderate selectivity against human tumor cells and weak activity on murine cells, probably due to structural differences between subunits of human and mice Na+/K+-ATPases.