Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Chempluschem ; 88(12): e202300115, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37191319

RESUMO

This work describes the synthesis of four gold(I) [AuClL] compounds containing chloro and biologically active protonated thiosemicarbazones based on 5-nitrofuryl (L=HSTC). The stability of the compounds in dichloromethane, DMSO, and DMSO/culture media solutions was investigated by spectroscopy, cyclic voltammetry, and conductimetry, indicating the formation overtime of cationic monometallic [Au(HTSC)(DMSO)]± or [Au(HTSC)2 ]± , and/or dimeric species. Neutral [{Au(TSC)}2 ] species were obtained from one of the compounds in dichlomethane/n-hexane solution and characterized by X-ray crystallography revealing a Au-Au bond, and deprotonated thiosemicarbazone (TSC). The cytotoxicity of the gold compounds and thiosemicarbazone ligands was evaluated against selected cancer cell lines and compared to that of Auranofin. Studies of the most stable, cytotoxic, and selective compound on a renal cancer cell line (Caki-1) demonstrated its relevant antimigratory and anti-angiogenic properties, and preferential accumulation in the cell nuclei. Its mode of action seems to involve interaction with DNA, and subsequent cell death via apoptosis.


Assuntos
Antineoplásicos , Tiossemicarbazonas , Ouro , Linhagem Celular Tumoral , Dimetil Sulfóxido , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química
2.
Arch Pharm (Weinheim) ; 356(8): e2300207, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37255416

RESUMO

COVID-19 has caused many deaths since the first outbreak in 2019. The burden on healthcare systems around the world has been reduced by the success of vaccines. However, population adherence and the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are still challenging tasks to be affronted. In addition, the newly approved drug presents some limitations in terms of side effects and drug interference, highlighting the importance of searching for new antiviral agents against SARS-CoV-2. The SARS-CoV-2 main protease (Mpr o ) represents a versatile target to search for new drug candidates due to its essential role in proteolytic activities responsible for the virus replication. In this work, a series of 190 compounds, composed of 27 natural ones and 163 synthetic compounds, were screened in vitro for their inhibitory effects against SARS-CoV-2 Mpro . Twenty-five compounds inhibited Mpro with inhibitory constant values (Ki ) between 23.2 and 241 µM. Among them, a thiosemicarbazone derivative was the most active compound. Molecular docking studies using Protein Data Bank ID 5RG1, 5RG2, and 5RG3 crystal structures of Mpro revealed important interactions identified as hydrophobic, hydrogen bonding and steric interactions with amino acid residues in the active site cavity. Overall, our findings indicate the described thiosemicarbazones as good candidates to be further explored to develop antiviral leads against SARS-CoV-2. Moreover, the studies showed the importance of careful evaluation of test results to detect and exclude false-positive findings.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Relação Estrutura-Atividade , Antivirais/farmacologia , Antivirais/química , Simulação de Dinâmica Molecular
3.
Eur J Med Chem ; 254: 115345, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37054562

RESUMO

Based on the activity of 23 TSCs on CZ taken from the literature, we have developed a QSAR model for predicting the activity of TSCs. New TSCs were designed and then tested against CZP, resulting in inhibitors with IC50 values in the nanomolar range. The modelling of the corresponding TSC-CZ complexes by molecular docking and QM/QM ONIOM refinement indicates a binding mode compatible with what was expected for active TSCs, according to a geometry-based theoretical model previously developed by our research group. Kinetic experiments on CZP suggest that the new TSCs act by a mechanism that involves the formation of a reversible covalent adduct with slow association and dissociation kinetics. These results demonstrate the strong inhibitory effect of the new TSCs and the benefit of the combined use of QSAR and molecular modelling techniques in the design of new and potent CZ/CZP inhibitors.


Assuntos
Tiossemicarbazonas , Tiossemicarbazonas/química , Simulação de Acoplamento Molecular , Cisteína Endopeptidases , Proteínas de Protozoários
4.
Exp Parasitol ; 248: 108498, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907541

RESUMO

In this work, 13 thiosemicarbazones (1a - m) and 16 thiazoles (2a - p) were obtained, which were properly characterized by spectroscopic and spectrometric techniques. The pharmacokinetic properties obtained in silico revealed that the derivatives are in accordance with the parameters established by lipinski and veber, showing that such compounds have good bioavailability or permeability when administered orally. In assays of antioxidant activity, thiosemicarbazones showed moderate to high antioxidant potential when compared to thiazoles. In addition, they were able to interact with albumin and DNA. Screening assays to assess the toxicity of compounds to mammalian cells revealed that thiosemicarbazones were less toxic when compared to thiazoles. In relation to in vitro antiparasitic activity, thiosemicarbazones and thiazoles showed cytotoxic potential against the parasites Leishmania amazonensis and Trypanosoma cruzi. Among the compounds, 1b, 1j and 2l stood out, showing inhibition potential for the amastigote forms of the two parasites. As for the in vitro antimalarial activity, thiosemicarbazones did not inhibit Plasmodium falciparum growth. In contrast, thiazoles promoted growth inhibition. This study shows in a preliminary way that the synthesized compounds have antiparasitic potential in vitro.


Assuntos
Tiossemicarbazonas , Trypanosoma cruzi , Animais , Antioxidantes/farmacologia , Antiparasitários/toxicidade , Relação Estrutura-Atividade , Tiazóis/farmacologia , Tiazóis/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Mamíferos
5.
J Inorg Biochem ; 237: 111995, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36152470

RESUMO

In the present work, the synthesis, characterization, antifungal activity, molecular docking study and in silico approach of five thiosemicarbazone derivatives and their corresponding zinc(II) complexes are described. The compounds were characterized by elemental analysis, IR, UV-Vis and NMR spectroscopic measurements, molar conductivity measurements, emission spectra, high-resolution mass spectrometry and X ray study. The antifungal activity of the free ligands and synthesized compounds was preliminarily evaluated against Candida albicans (ATCC 90028), Candida tropicalis (ATCC 13803) and Candida glabrata (ATCC 2001), by the minimum inhibitory concentration (MIC) assay. Two complexes, 4 (MIC = 3.18 to 6.37 µM) and 5 (MIC = 25.95 µM for all) showed promising results, being highly active against all strains evaluated. The X-ray analyses shown that the complex 2 crystallizes in the centrosymmetric space group P21/c of the monoclinic system and the coordination sphere around zinc(II) atom is better described as slightly distorted octahedral. The Hirshfeld surface (HS) analysis showed that non-classical H···H and C···H/H···C contacts contribute with 65.9% while the S···H and N···H (21%) and Cl···H and O···H interactions (12%) complete the HS area. The molecular docking results, performed against CYP51 enzyme (sterol 14α-demethylase) of C. albicans and C. glabrata shows that the complexes 4 (ΔG = -10.75 and - 12.90 kcal/ mol) and 5 (ΔG = -11.12 and - 14.53 kcal/ mol) showed the highest binding free energies of all compounds. The ADME-Tox (absorption, distribution, metabolism, excretion and toxicity) in silico parameters evaluated showed promising results for all compounds.


Assuntos
Complexos de Coordenação , Tiossemicarbazonas , Simulação de Acoplamento Molecular , Antifúngicos/química , Zinco/química , Ligantes , Tiossemicarbazonas/química , Testes de Sensibilidade Microbiana , Candida albicans , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Estrutura Molecular
6.
Bioorg Med Chem ; 61: 116708, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35334448

RESUMO

The development of cruzipain inhibitors represents one of the most attractive challenges in the search for drugs for the treatment of Chagas disease. A recombinant form of this enzyme, cruzain, has been crystallized with numerous inhibitors, excluding thiosemicarbazones. These compounds have been established as potent inhibitors of cruzain, although there is very little data in the literature of thiosemicarbazones tested on cruzipain. In this work, we present the results of the evaluation of eleven thiosemicarbazones on cruzipain, isolated from T. cruzi epimastigotes, six of them previously evaluated on cruzain. For these latter, we studied through computational methods, the mode of interaction with the active site of cruzain and the contribution of geometric parameters to the possible mechanism of action involved in the observed inhibition. Finally, from some geometric parameters analyzed on modeled TSC-cruzain complexes, a semi-quantitative relationship was established that could explain the inhibitory activity of thiosemicarbazones on cruzipain, the enzyme actually present in the parasite.


Assuntos
Doença de Chagas , Tiossemicarbazonas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/farmacologia , Proteínas de Protozoários , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia
7.
Anticancer Agents Med Chem ; 22(12): 2204-2240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34852749

RESUMO

Thiazoles, triazoles, and thiosemicarbazones function as efficient scaffolds in compounds for the treatment of several illnesses, including cancers. In this review article, we have demonstrated various studies involving these three pharmacophore classes (thiazoles, triazoles, and thiosemicarbazones) in medicinal chemistry over the last decade (2011-2021) with a focus on MCF-7 adenocarcinoma breast cancer cells. Our objective is to facilitate drug discovery of novel chemotherapeutic agents by detailing anti-proliferative compounds.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias da Mama , Tiossemicarbazonas , Adenocarcinoma/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Desenvolvimento de Medicamentos , Feminino , Humanos , Tiazóis/química , Tiazóis/farmacologia , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Triazóis/química , Triazóis/farmacologia
8.
J Inorg Biochem ; 223: 111543, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34298306

RESUMO

Considering the promising previous results on the remarkable activity exhibited by cobalt(III) and manganese(II) thiosemicarbazone compounds as antibacterial agents, the present study aimed to prepare and then evaluate the antibacterial activity of two different types of Cu(II) complexes based on a 2-acetylpyridine-N(4)-methyl-thiosemicarbazone ligand (Hatc-Me), a monomer complex [CuCl(atc-Me)] and a novel dinuclear complex [{Cu(µ-atc-Me)}2µ-SO4]. The compounds were characterized by infrared spectra, ultraviolet visible and CHN elemental analysis. In addition, the crystalline structures of the complexes were determined by single-crystal X-ray diffraction. In both cases, the Schiff base ligand coordinated in a tridentate mode via the pyridine nitrogen, imine nitrogen and sulfur atoms. The two Cu(II) atoms in the dimer are five coordinate, consisting of three NNS-donor atoms from the thiosemicarbazone ligand connected by a sulfate bridge. The Hirshfeld surface and energy framework of the complexes were additionally analyzed to verify the intermolecular interactions. The biological activity of the Cu(II) salts, the free ligand and its Cu(II) complexes was evaluated against six strains of mycobacteria including Mycobacterium tuberculosis. The complexes showed promising results as antibacterial agents for M. avium and M. tuberculosis, which ranged from 6.12 to 12.73 µM. Furthermore, molecular docking analysis was performed and the binding energy of the docked compound [{Cu(µ-atc-Me)}2µ-SO4] with M. tuberculosis and M. avium strains were extremely favorable (-11.11 and - 14.03 kcal/mol, respectively). The in silico results show that the complexes are potential candidates for the development of new antimycobacterial drugs.


Assuntos
Antituberculosos/farmacologia , Complexos de Coordenação/farmacologia , Tiossemicarbazonas/farmacologia , Antituberculosos/síntese química , Antituberculosos/metabolismo , Antituberculosos/farmacocinética , Proteínas de Bactérias/metabolismo , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacocinética , Cobre/química , Ligantes , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Mycobacterium avium/efeitos dos fármacos , Mycobacterium kansasii/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Ligação Proteica , Relação Estrutura-Atividade , Termodinâmica , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/metabolismo , Tiossemicarbazonas/farmacocinética
9.
Bioorg Chem ; 113: 105018, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34098396

RESUMO

Chagas disease (ChD), caused by Trypanosoma cruzi, remains a challenge for the medical and scientific fields due to the inefficiency of the therapeutic approaches available for its treatment. Thiosemicarbazones and hydrazones present a wide spectrum of bioactivities and are considered a platform for the design of new anti-T. cruzi drug candidates. Herein, the potential antichagasic activities of [(E)-2-(1-(4-chlorophenylthio)propan-2-ylidene)-hydrazinecarbothioamides] (C1, C3), [(E)-N'-(1-((4-chlorophenyl)thio)propan-2-ylidene)benzohydrazide] (C2), [(E)-2-(1-(4-, and [(E)-2-(1-((4-chlorophenyl)thio)propan-2-ylidene)hydrazinecarboxamide] (C4) were investigated. Macrophages (MOs) from C57BL/6 mice stimulated with C1 and C3, but not with C2 and C4, reduced amastigote replication and trypomastigote release, independent of nitric oxide (NO) and reactive oxygen species production and indoleamine 2,3-dioxygenase activity. C3, but not C1, reduced parasite uptake by MOs and potentiated TNF production. In cardiomyocytes, C3 reduced trypomastigote release independently of NO, TNF, and IL-6 production. C1 and C3 were non-toxic to the host cells. A reduction of parasite release was found during infection of MOs with trypomastigotes pre-incubated with C1 or C3 and MOs pre-stimulated with compounds before infection. Moreover, C1 and C3 acted directly on trypomastigotes, killing them faster than Benznidazole, and inhibited T. cruzi proliferation at various stages of its intracellular cycle. Mechanistically, C1 and C3 inhibit parasite duplication, and this process cannot be reversed by inhibiting the DNA damage response. In vivo, C1 and C3 attenuated parasitemia in T. cruzi-infected mice. Moreover, C3 loaded in a lipid nanocarrier system (nanoemulsion) maintained anti-T. cruzi activity in vivo. Collectively, these data suggest that C1 and C3 are candidates for the treatment of ChD and present activity in both the host and parasite cells.


Assuntos
Tiossemicarbazonas/química , Tripanossomicidas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Cisteína Endopeptidases/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Desenho de Fármacos , Feminino , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Óxido Nítrico/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Ratos , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/fisiologia
10.
Eur J Pharm Sci ; 162: 105834, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33826936

RESUMO

Gold(III) complexes have been studied for the past years due to their anticancer properties and great affinity to biotargets, such as enzymes and proteins, which support their pharmacological applications. Within this scope, in this work the antiproliferative activities of two Au(III)-thiosemicarbazonate complexes, [AuClL1] (1, L1: (E,Z)-N-ethyl-N'-(3-nitroso-kN)butan-2-ylidene)carbamohydrazonothioato-k2N2,S) and [Au(Hdamp)L2]Cl (2, L2: N-(N'',N''-diethylaminothiocarbonyl)-N'(N''', N'''-dimethylcarbothioamide)benzamidineto-kN,k2S and Hdamp: 2-(N,N-dimethylaminomethyl)-phenyl-C1), and their affinities to possible biological targets were investigated. Three different tumor cell lines were used to perform the cytotoxicity assays, including one cisplatin-resistant model, and the results showed lower EC50 for 1 over 2 in every case: B16F10 (4.1 µM and 15.6 µM), A431 (4.0 µM and >50 µM) and OVCAR3 (4.2 µM and 24.5 µM). However, a lower toxicity to fibroblast 3T3 cell line was observed for 2 (30.58 µM) when compared to 1 (7.17 µM), resulting in comparable therapeutic indexes. Both complexes presented strong affinity to HSA: they distorted the secondary structure of the protein, as verified by circular dichroism, but 1 additionally presented the apparent fluorescence quenching constant (Kapp) ten times greater than 2, which was probably due to the fact of 1 being able to denature HSA. The ethidium bromide displacement assay showed that neither 1 nor 2 are strong DNA intercalators, which is in agreement with what was observed through the UV-vis titration. In both cases, the 260 nm band presented hyperchromism, which can indicate ionic interactions or DNA damage. In fact, 1 was able to damage the pGEM plasmid, similarly to cisplatin, as verified by agarose gel electrophoresis and Atomic Force Microscopy. Biophysical studies in cancer cells model membranes were also performed in order to investigate the interaction of the gold complexes to lipid bilayers and revealed that the compounds interact with the membranes by exhibiting partition coefficients of 103 order of magnitude. Overall, both complexes were found to be promising candidates for the development of a future anticancer drug against low sensitive or cisplatin resistant tumors.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Feminino , Ouro , Humanos , Ligantes
11.
J Mol Model ; 27(4): 101, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33660108

RESUMO

Thiosemicarbazones (TSCs) encompasses a class of compounds relevant in the pharmacological context. Their specific applicability varies in function of the appropriated chemical modification and their binding to different transition metals. In the present work, we apply current standards functionals, B3LYP and B97D, with triple zeta basis set quality, 6-311++G(d,p), to investigate the relative stability of the various possible spatial arrangements for 2-acetylthiophene and 2-acetylthiophene-N1-phenyl thiosemicarbazones, denoted ATTSC and ATTSC-Ph, respectively. The relative stability of neutral and deprotonated species at ethanol described by an implicit solvent model was investigated. For ATTSC, the relative Gibbs energy changed significantly upon deprotonation, and for ATTSC-Ph, a novel global minimum was identified. Based on the present study, deprotonation determines population in condensed-media. Such information, valid for ATTSC and ATTSC-Ph, can be crucial in studying other thiosemicarbazones.

12.
Heliyon ; 6(10): e05161, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33072918

RESUMO

PURPOSE: Advanced triple negative breast cancer (ATNBC) is defined by a lack of expression of hormones receptors as well as HER2/neu and its high probability of visceral metastasis. This pathology is associated with a poor prognosis. Previously, we found that T2, an N 4-arylsubstituted thiosemicarbazone (N 4-TSC), had cytotoxic effect on human breast cancer cells lines. Hence, in this study, we investigated the anti-metastasic action of T2 on ATNBC. METHODS: In order to deepen T2 action mode on ATNBC, we first confirmed T2 cytotoxicity on a panel of TNBC cells and then continued studying T2 effects in vitro an in vivo on the syngeneic 4T1 mouse model. RESULTS: We found that T2 had a cytotoxic effect comparable to chemotherapeutics used in present treatment schemes for ATNBC. T2 treatment not only induced apoptosis, but it also down-modulated 4T1 invasive and metastatic-associated capacities, such as clonogenicity, migration and metallo-proteases activity. Moreover, this agent reduced the number of 4T1 cancer stem cells. Finally, T2 treatment induced a more differentiated cell phenotype and the overexpression of the metastasis suppressor gene NDRG-1. In vivo assays showed that T2 reduced tumor burden, down modulated local tumor invasion and significantly reduced the number of lung metastases in the 4T1 advanced TNBC murine model, while the compound did not exhibit intolerable toxicity. CONCLUSION: This study provided evidence that T2 not only exerted an anti-tumor activity but it also showed anti-invasive and anti-metastatic actions on ATNBC in vivo and in vitro, suggesting that T2 could be considered as a promising therapy that deserves further analysis.

13.
Invest New Drugs ; 38(3): 558-573, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31177399

RESUMO

Cis-diamminedichloroplatinum(II) (CDDP), known as cisplatin, has been extensively used against breast cancer, which is the most frequent cancer among women, and lung cancer, the leading cancer that causes death worldwide. Novel compounds such as thiazole derivatives have exhibited antiproliferative activity, suggesting they could be useful against cancer treatment. Herein, we synthesized two novel thiosemicarbazones and an aldehyde to combine with CDDP to enhance efficacy against ER-positive breast MCF7 cancer cells, triple-negative/basal-B mammary carcinoma cells (MDA-MB231) and lung adenocarcinoma (A549) human cells. We synthesized 2,3,5,6-tetrafluoro-4-(2-mercaptoetanothiolyl)benzaldehyde (ALD), 5-[(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)thio]-2-furaldehyde thiosemicarbazone (TSC1) and 5-[(4-(trifluoromethyl)phenyl)thio]-2-furaldehyde thiosemicarbazone (TSC2) and used them alone or in combination with subtoxic CDDP concentrations to evaluate cytotoxicity, cytoskeleton integrity and mitochondrial function. We found that none of the synthesized compounds improved CDDP activity against MCF7 cell cultures; however, TSC2 was effective in enhancing the cytotoxicity of CDDP against MDA-MB231 and A549 cancer cell cultures. We demonstrated that the cytotoxic effect is related to the TSC2 capacity to induce disruption in the cytoskeleton network and to decrease mitochondrial function.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Estrogênios/metabolismo , Receptores de Estrogênio/metabolismo , Tiossemicarbazonas/efeitos adversos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Células A549 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Células MCF-7 , Neoplasias de Mama Triplo Negativas/metabolismo
14.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;53(10): e10204, 2020. graf
Artigo em Inglês | LILACS, Coleciona SUS | ID: biblio-1132473

RESUMO

Several isatin derivatives have shown important biological activities, which have attracted interest from researchers. For this reason, the present study aimed to evaluate the anti-inflammatory and antinociceptive effects of the isatin derivative (Z)-2-(5-chloro-2-oxoindolin-3-ylidene)-N-phenyl-hydrazinecarbothioamide (COPHCT) in mice. Three doses of this compound were tested: 1.0, 2.5, and 5.0 mg/kg. The anti-inflammatory activity was assessed using the carrageenan-induced paw edema model and the zymosan-induced air pouch model. The evaluation of the antinociceptive effect was performed through the formalin test and the acetic acid-induced abdominal writhing test. The paw edema assay demonstrated that all doses of the compound showed a significant reduction of the edema in the second hour evaluated, but a better response was observed in the fourth hour. The zymosan-induced air pouch model indicated that the compound, in all doses, significantly reduced leukocyte migration and total protein concentration levels. In the formalin test, the doses 1.0, 2.5, and 5.0 mg/kg of COPHCT showed activity only in the second phase, with reduction in paw pain time of 73.61, 79.46, and 73.85%, respectively. The number of abdominal writhings decreased with the increasing dose, but only 5.0 mg/kg COPHCT exhibited a significant response, with a reduction of 24.88%. These results demonstrated the ability of this compound to interfere in the anti-inflammatory activity of edema, vascular permeability, and cell migration. In addition, its possible antinociceptive effect may be related to the dose used.


Assuntos
Animais , Masculino , Feminino , Ratos , Analgésicos/farmacologia , Isatina/farmacologia , Anti-Inflamatórios/farmacologia , Extratos Vegetais , Carragenina , Edema
15.
Biomolecules ; 9(11)2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652866

RESUMO

A series of seven chalcone-thiosemicarbazones (5a-5g) were synthesized and evaluated as potential new drugs (anti-leishmanial effect). Although four of the chalcone-thiosemicarbazones are already known, none of them or any compound in this class has been previously investigated for their effects on parasites of the Leishmania genus. The compounds were prepared in satisfactory yields (40-75%) and these compounds were evaluated against promastigotes, axenic amastigotes and intracellular amastigotes of L. amazonensis after 48 h of culture. The half maximal inhibitory concentration (IC50) values of the intracellular amastigotes were determined to be in the range of 3.40 to 5.95 µM for all compounds assayed. The selectivity index showed value of 15.05 for 5a, whereas pentamidine (reference drug) was more toxic in our model (SI = 2.32). Furthermore, to understand the preliminary relationship between the anti-leishmanial activity of the chalcone-thiosemicarbazones, their electronic (σ), steric (MR) and lipophilicity (π) properties were correlated, and the results indicated that moieties with electronic withdrawing effects increase the anti-leishmanial activity. The preliminary pharmacokinetic evaluation of one of the most active compound (5e) was studied via interaction to human serum albumin (HSA) using multiple spectroscopic techniques combined with molecular docking. The results of antiparasitic effects against L. amazonensis revealed the chalcone-thiosemicarbazone class to be novel prototypes for drug development against leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Chalconas/farmacologia , Leishmania/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Animais , Antiprotozoários/química , Chalconas/química , Leishmania/crescimento & desenvolvimento , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos Endogâmicos BALB C , Ligação Proteica , Albumina Sérica Humana/química , Tiossemicarbazonas/química
16.
ACS Infect Dis ; 5(10): 1698-1707, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31419384

RESUMO

Chagas disease remains a serious public health concern with unsatisfactory treatment outcomes due to strain-specific drug resistance and various side effects. To identify new therapeutic drugs against Trypanosoma cruzi, we evaluated both the in vitro and in vivo activity of the organometallic gold(III) complex [Au(III)(Hdamp)(L14)]Cl (L1 = SNS-donating thiosemicarbazone), henceforth denoted 4-Cl. Our results demonstrated that 4-Cl was more effective than benznidazole (Bz) in eliminating both the extracellular trypomastigote and intracellular amastigote forms of the parasite without cytotoxic effects on mammalian cells. In in vivo assays, 4-Cl in PBS solution loses the protonation and becomes the 4-neutral. 4-Neutral reduced parasitaemia and tissue parasitism in addition to protecting the liver and heart from tissue damage at 2.8 mg/kg/day. All these changes resulted in the survival of 100% of the mice treated with the gold complex during the acute phase. Analyzing the surviving animals of the acute infection, the parasite load after 150 days of infection was equivalent to those treated with the standard dose of Bz without demonstrating the hepatotoxicity of the latter. In addition, we identified a modulation of interferon gamma (IFN-γ) levels that may be targeting the disease's positive outcome. To the best of our knowledge, this is the first gold organometallic study that shows promise in an in vivo experimental model against Chagas disease.


Assuntos
Doença de Chagas/tratamento farmacológico , Ouro/química , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Doença de Chagas/patologia , Cisteína Endopeptidases , Modelos Animais de Doenças , Resistência a Medicamentos/efeitos dos fármacos , Feminino , Coração , Humanos , Interferon gama/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Músculo Esquelético/parasitologia , Músculo Esquelético/patologia , Nitroimidazóis , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Parasitemia , Proteínas de Protozoários , Análise de Sobrevida
17.
Invest New Drugs ; 37(5): 994-1005, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30661149

RESUMO

Thiosemicarbazone is a class of compounds with potential applications in medicine, presenting high capacity to inhibit the growth of cancer cells as well as low toxicity. Because of high interest in anticancer studies involving thiosemicarbazones as new chemotherapeutic agents, a synthetic thiosemicarbazone derivative, 4-N-(2'-methoxy-styryl)-thiosemicarbazone (MTSC) was evaluated in vivo against Ehrlich carcinoma in an animal model. In vivo results demonstrated that MTSC treatment induced the survival of mice and altered significantly the body weight of the surviving mice 12 days after tumor inoculation. Treatment with 30 mg/kg of MTSC exhibited effective cytotoxic activity with T/C values of 150.49% (1 dose) and 278% (2 doses). Its interaction with human serum albumin (HSA), which plays a crucial role in the biodistribution of a wide variety of ligands, was investigated by multiple spectroscopic techniques at 296 K, 303 K, and 310 K, as well as by theoretical calculations. The interaction between HSA and MTSC occurs via ground-state association in the subdomain IIA (Sudlow's site I). The binding is moderate (Ka ≈ 104 M-1), spontaneous, entropically, and enthalpically driven. Molecular docking results suggested hydrogen bonding and hydrophobic interactions as the main binding forces. Overall, the interaction HSA:MTSC could provide therapeutic benefits, improving its cytotoxic efficacy and tolerability.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Ehrlich/patologia , Leucemia Eritroblástica Aguda/patologia , Albumina Sérica Humana/metabolismo , Tiossemicarbazonas/farmacologia , Animais , Antineoplásicos/química , Apoptose , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/metabolismo , Proliferação de Células , Feminino , Humanos , Técnicas In Vitro , Leucemia Eritroblástica Aguda/tratamento farmacológico , Leucemia Eritroblástica Aguda/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Albumina Sérica Humana/química , Tiossemicarbazonas/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Nat Prod Res ; 33(23): 3372-3377, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29792346

RESUMO

In this work the aim of study was the synthesis and evaluation of in vitro anti-Mycobacterium tuberculosis activity as well as the cytotoxicity in VERO cells of a series of 17 novel thiosemicarbazones derived from the natural monoterpene (-)-camphene by REMA and MTT methods. Overall, the majority of tested compounds exhibited considerable inhibitory effects on the growth of M. tuberculosis H37Rv, especially the derivatives 3, 4a-c, 4f, 4i, 4k, 5 and 6a-b. MIC values of 20 tested compounds ranged from 3.9 to > 250 µg/mL. It was found that when inserting new nitrogenous groups to the (-)-camphene increased the anti-M. tuberculosis activity of some compounds. The SI was calculated for all compounds that showed highly potent anti-M. tuberculosis activity and the best SI values were 21.36, 26.92 and 31.62 (4b, 6a and 6b), and may be considered potential candidates for future antituberculosis drugs.


Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/farmacologia , Animais , Monoterpenos Bicíclicos/química , Chlorocebus aethiops , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Células Vero
19.
Med Chem ; 15(1): 38-50, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30058497

RESUMO

BACKGROUND: Microbial infections is a global public health problem. The aim of this work was to synthesize and evaluate the antimicrobial activity of novel triazoles, morpholines and thiosemicarbazones. METHODS: Compounds were synthesized using 2,4-Dihydroxyacetophenone and 4-hydroxybenzaldehyde as starting materials. The antimicrobial activity of these compounds against bacteria and yeast was evaluated by the broth microdilution method. RESULTS: The proposed route for synthesis gave high to moderate yields, moreover these compounds were successfully characterized by 1H NMR, 13C NMR and LC-MS. Antimicrobial testing indicated that the thiosemicarbazone and morphine derivatives had the best antimicrobial activity against the microorganisms tested with minimum inhibitory concentrations (MIC) between 0.29 and 5.30 µM. Thiosemicarbazone derivative (12) was able to inhibit the growth of C. tropicalis, with minimum fungicidal concentration (MFC) of 0.55 µM. In addition, this compound was active against E. coli, S. aureus and S. epidermidis, with MIC values ranging from 0.29 to 1.11 µM. Moreover, the morpholine derivative (15) had an MIC value of 0.83 µM against C. albicans and E. coli. CONCLUSION: We have efficiently synthesized a series of eleven novel triazoles, thiosemicarbazones and morpholine derivatives using 2,4-Dihydroxyacetophenone and 4-hydroxybenzaldehyde as starting materials. Thiosemicarbazone derivative (12) showed promising antifungal and antibacterial activity and these findings suggest that this compound can be used as scaffolds to design new antimicrobial drugs.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Morfolinas/farmacologia , Tiossemicarbazonas/farmacologia , Triazóis/farmacologia , Acetofenonas/síntese química , Acetofenonas/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/síntese química , Antifúngicos/síntese química , Candida/efeitos dos fármacos , Chalconas/síntese química , Chalconas/farmacologia , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Morfolinas/síntese química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Tiossemicarbazonas/síntese química , Triazóis/síntese química
20.
Bioorg Med Chem ; 26(21): 5742-5750, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389409

RESUMO

Mycobacterium tuberculosis secretes two protein tyrosine phosphatases as virulence factors, PtpA and PtpB. Inhibition studies of these enzymes have shown significant attenuation of the M. tuberculosis growth in vivo. As PtpA mediates many effects on the regulation of host signaling ensuring the intracellular survival of the bacterium we report, for the first time, thiosemicarbazones as potential novel class of PtpA inhibitors. Several compounds were synthesized and biologically evaluated, revealing interesting results. Enzyme kinetic assays showed that compounds 5, 9 and 18 are non-competitive inhibitors of PtpA, with Ki values ranging from 1.2 to 5.6 µM. Modeling studies clarified the structure-activity relationships observed in vitro and indicated a possible allosteric binding site in PtpA structure. To the best of our knowledge, this is the first disclosure of potent non-competitive inhibitors of PtpA with great potential for future studies and development of analogues.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Tiossemicarbazonas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Proteínas de Bactérias/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas Tirosina Fosfatases/química , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA