Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1034: 137-143, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30193627

RESUMO

The envisaged ubiquitous sensing and biosensing for varied applications has motivated materials development toward low cost, biocompatible platforms. In this paper, we demonstrate that carbon nanodiamonds (NDs) can be combined with potato starch (PS) and be deposited on a glassy carbon electrode (GCE) in the form of a homogeneous, rough film, with electroanalytical performance tuned by varying the relative ND-PS concentration. As a proof of concept, the ND/PS film served as matrix to immobilize tyrosinase (Tyr) and the resulting Tyr-ND-PS/GCE biosensor was suitable to detect catechol using differential pulse voltammetry with detection limit of 3.9 × 10-7 mol L-1 in the range between 5.0 × 10-6 and 7.4 × 10-4 mol L-1. Catechol could also be detected in river and tap water samples. This high sensitivity, competitive with biosensors made with more sophisticated procedures and materials in the literature, is attributed to the large surface area and conductivity imparted by the small NDs (<5 nm). In addition, the ND-PS matrix may have its use extended to immobilize other enzymes and biomolecules, thus representing a potential biocompatible platform for ubiquitous biosensing.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Enzimas Imobilizadas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Nanodiamantes/química , Fenóis/análise , Solanum tuberosum/química , Amido/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA