RESUMO
OBJECTIVE: Pleomorphic adenoma (PA), mucoepidermoid carcinoma (MEC), and adenoid cystic carcinoma (ACC) are the most prevalent salivary gland tumors. Their pathogenesis has been recently associated with complex molecular cascades, including the TGFß signaling pathway. The aim of this study was to evaluate the expression of genes associated with the TGFß signaling pathway (TGFB1, ITGB6, SMAD2, SMAD4, FBN1, LTBP1, and c-MYC) to map possible downstream alterations in the TGFß cascade. DESIGN: Thirteen PA, 17 MEC, 13 ACC, and 10 non-neoplastic salivary gland samples were analyzed by real-time RT-PCR. RESULTS: Cases of PA presented increased TGFB1, LTPB1, c-MYC, and FBN1 expressions, whereas SMAD2 expression was decreased when compared to non-neoplastic tissue. MEC patients displayed increased expressions of TGFB1, ITGB6, FBN1, and c-MYC and decreased expressions of SMAD2 and SMAD4. ACC cases exhibited elevated expressions of the investigated genes except TGFB1. The present results suggest that decreased expression of SMAD2 and SMAD4 does not impede the transcriptional regulation of c-MYC, especially in PA and MEC. Increased expressions of ITGB6, TGFB1, LTBP1, and FBN1 appear to be related to the regulation of the TGFß signaling pathway in these tumors. Additionally, we observed a higher expression of SMAD4 in ACC and a raised expression of ITGB6 and lowered expression of SMAD2 in MEC. CONCLUSIONS: Our study demonstrated the differential expression of TGFß cascade members in salivary gland tumors such as SMAD2/SMAD4 and c-MYC as well as the participation of ITGB6, TGFB1, LTBP1, and FBN1, contributing to the understanding of the mechanisms involved in tumor progression.
Assuntos
Adenoma Pleomorfo , Carcinoma Adenoide Cístico , Carcinoma Mucoepidermoide , Neoplasias das Glândulas Salivares , Fator de Crescimento Transformador beta , Humanos , Adenoma Pleomorfo/genética , Adenoma Pleomorfo/metabolismo , Adenoma Pleomorfo/patologia , Biomarcadores Tumorais/metabolismo , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/metabolismo , Carcinoma Mucoepidermoide/metabolismo , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismoRESUMO
The modulation of inflammation is pivotal for uterine homeostasis. Here we evaluated the effect of the oestrus cycle on the expression of pro-inflammatory and anti-inflammatory markers in a cellular model of induced fibrosis. Mare endometrial stromal cells isolated from follicular or mid-luteal phase were primed with 10 ng/mL of TGFß alone or in combination with either IL1ß, IL6, or TNFα (10 ng/mL each) or all together for 24 h. Control cells were not primed. Messenger and miRNA expression were analyzed using real-time quantitative PCR (RT-qPCR). Cells in the follicular phase primed with pro-inflammatory cytokines showed higher expression of collagen-related genes (CTGF, COL1A1, COL3A1, and TIMP1) and mesenchymal marker (SLUG, VIM, CDH2, and CDH11) genes; p < 0.05. Cells primed during the mid-luteal overexpressed genes associated with extracellular matrix, processing, and prostaglandin E synthase (MMP2, MMP9, PGR, TIMP2, and PTGES; p < 0.05). There was a notable upregulation of pro-fibrotic miRNAs (miR17, miR21, and miR433) in the follicular phase when the cells were exposed to TGFß + IL1ß, TGFß + IL6 or TGFß + IL1ß + IL6 + TNFα. Conversely, in cells from the mid-luteal phase, the treatments either did not or diminished the expression of the same miRNAs. On the contrary, the anti-fibrotic miRNAs (miR26a, miR29b, miR29c, miR145, miR378, and mir488) were not upregulated with treatments in the follicular phase. Rather, they were overexpressed in cells from the mid-luteal phase, with the highest regulation observed in TGFß + IL1ß + IL6 + TNFα treatment groups. These miRNAs were also analyzed in the extracellular vesicles secreted by the cells. A similar trend as seen with cellular miRNAs was noted, where anti-fibrotic miRNAs were downregulated in the follicular phase, while notably elevated pro-fibrotic miRNAs were observed in extracellular vesicles originating from the follicular phase. Pro-inflammatory cytokines may amplify the TGFß signal in the follicular phase resulting in significant upregulation of extracellular matrix-related genes, an imbalance in the metalloproteinases, downregulation of estrogen receptors, and upregulation of pro-fibrotic factors. Conversely, in the luteal phase, there is a protective role mediated primarily through an increase in anti-fibrotic miRNAs, a decrease in SMAD2 phosphorylation, and reduced expression of fibrosis-related genes.
RESUMO
Fibrosis is a condition characterized by the excessive accumulation of extracellular matrix proteins in tissues, leading to organ dysfunction and failure. Recent studies have identified EP300, a histone acetyltransferase, as a crucial regulator of the epigenetic changes that contribute to fibrosis. In fact, EP300-mediated acetylation of histones alters global chromatin structure and gene expression, promoting the development and progression of fibrosis. Here, we review the role of EP300-mediated epigenetic regulation in multi-organ fibrosis and its potential as a therapeutic target. We discuss the preclinical evidence that suggests that EP300 inhibition can attenuate fibrosis-related molecular processes, including extracellular matrix deposition, inflammation, and epithelial-to-mesenchymal transition. We also highlight the contributions of small molecule inhibitors and gene therapy approaches targeting EP300 as novel therapies against fibrosis.
Assuntos
Epigênese Genética , Histonas , Humanos , Fibrose , Histonas/metabolismo , Matriz Extracelular/metabolismo , Histona Acetiltransferases/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismoRESUMO
PURPOSE: One of the hypotheses regarding the genesis of epithelial ovarian cancer involves the action of androgens on the proliferation of epithelial ovarian cells, as well as inclusion cysts. The purpose of the present study was to evaluate whether DHT causes changes in the TGF-ß1 pathway that might modify the anti-proliferative effect of the latter. METHODS: The levels of TGF-ß1 protein, of its receptors (TGFBR1 and TGFBR2), of Smad2/3 (canonical signaling pathway protein) and of p21 (cell cycle protein) were assessed in ovarian tissues, epithelial ovarian cancer cell lines (A2780) and control cell lines (HOSE) through the use of immunohistochemistry and immunocytochemistry. Additionally, cell lines were treated with 100 nmol/L DHT, 10 ng/mL of TGF-ß1 and DHT + TGF-ß1 during 72 h in the presence and absence of a siRNA against androgen receptor. After treatment, TGFBR1 and TGFBR2 levels were detected through Western blotting and p21 was assessed through immunocytochemistry. RESULTS: Epithelial ovarian cancer tissues showed a decrease in TGF-ß1 I receptor (p < 0.05) and a change in Smad2/3 protein levels. Additionally, after treatment of cell lines with DHT, protein levels of TGF-ß1 receptors (TGFBR1-TGFBR2) showed a decrease (p < 0.05) that might cause a potential disorder in TGF-ß1 response, represented by the significant decrease in p21 protein levels in the presence of DHT (p < 0.001). CONCLUSIONS: Overall, our results indicate a defect in the canonical TGF-ß signaling pathway in epithelial ovarian cancer caused by androgen action, thus suggesting eventual changes in such tissue proliferation rates.