RESUMO
Astrocytes play a critical role in the maintenance of a healthy central nervous system and astrocyte dysfunction has been implicated in various neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). There is compelling evidence that mouse and human ALS and ALS/FTD astrocytes can reduce the number of healthy wild-type motoneurons (MNs) in co-cultures or after treatment with astrocyte conditioned media (ACM), independently of their genotype. A growing number of studies have shown that soluble toxic factor(s) in the ACM cause non-cell autonomous MN death, including our recent identification of inorganic polyphosphate (polyP) that is excessively released from mouse primary astrocytes (SOD1, TARDBP, and C9ORF72) and human induced pluripotent stem cells (iPSC)-derived astrocytes (TARDBP) to kill MNs. However, others have reported that astrocytes carrying mutant TDP43 do not produce detectable MN toxicity. This controversy is likely to arise from the findings that human iPSC-derived astrocytes exhibit a rather immature and/or reactive phenotype in a number of studies. Here, we have succeeded in generating a highly homogenous population of functional quiescent mature astrocytes from control subject iPSCs. Using identical conditions, we also generated mature astrocytes from an ALS/FTD patient carrying the TDP43A90V mutation. These mutant TDP43 patient-derived astrocytes exhibit key pathological hallmarks, including enhanced cytoplasmic TDP-43 and polyP levels. Additionally, mutant TDP43 astrocytes displayed a mild reactive signature and an aberrant function as they were unable to promote synaptogenesis of hippocampal neurons. The polyP-dependent neurotoxic nature of the TDP43A90V mutation was further confirmed as neutralization of polyP in ACM derived from mutant TDP43 astrocytes prevented MN death. Our results establish that human astrocytes carrying the TDP43A90V mutation exhibit a cell-autonomous pathological signature, hence providing an experimental model to decipher the molecular mechanisms underlying the generation of the neurotoxic phenotype.
RESUMO
The neurodegenerative and inflammatory illnesses of amyotrophic lateral sclerosis and multiple sclerosis were once thought to be completely distinct entities that did not share any remarkable features, but new research is beginning to reveal more information about their similarities and differences. Here, we review some of the pathophysiological features of both diseases and their experimental models: RNA-binding proteins, energy balance, protein transportation, and protein degradation at the molecular level. We make a thorough analysis on TDP-43 and hnRNP A1 dysfunction, as a possible common ground in both pathologies, establishing a potential link between neurodegeneration and pathological immunity. Furthermore, we highlight the putative variations that diverge from a common ground in an atemporal course that proposes three phases for all relevant molecular events.
RESUMO
The neuropathological hallmarks of Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS) are present in urban children exposed to fine particulate matter (PM2.5), combustion and friction ultrafine PM (UFPM), and industrial nanoparticles (NPs). Metropolitan Mexico City (MMC) forensic autopsies strongly suggest that anthropogenic UFPM and industrial NPs reach the brain through the nasal/olfactory, lung, gastrointestinal tract, skin, and placental barriers. Diesel-heavy unregulated vehicles are a key UFPM source for 21.8 million MMC residents. We found that hyperphosphorylated tau, beta amyloid1-42, α-synuclein, and TAR DNA-binding protein-43 were associated with NPs in 186 forensic autopsies (mean age 27.45 ± 11.89 years). The neurovascular unit is an early NPs anatomical target, and the first two decades of life are critical: 100% of 57 children aged 14.8 ± 5.2 years had AD pathology; 25 (43.9%) AD+TDP-43; 11 (19.3%) AD + PD + TDP-43; and 2 (3.56%) AD +PD. Fe, Ti, Hg, Ni, Co, Cu, Zn, Cd, Al, Mg, Ag, Ce, La, Pr, W, Ca, Cl, K, Si, S, Na, and C NPs are seen in frontal and temporal lobes, olfactory bulb, caudate, substantia nigra, locus coeruleus, medulla, cerebellum, and/or motor cortical and spinal regions. Endothelial, neuronal, and glial damages are extensive, with NPs in mitochondria, rough endoplasmic reticulum, the Golgi apparatus, and lysosomes. Autophagy, cell and nuclear membrane damage, disruption of nuclear pores and heterochromatin, and cell death are present. Metals associated with abrasion and deterioration of automobile catalysts and electronic waste and rare earth elements, i.e., lanthanum, cerium, and praseodymium, are entering young brains. Exposure to environmental UFPM and industrial NPs in the first two decades of life are prime candidates for initiating the early stages of fatal neurodegenerative diseases. MMC children and young adults-surrogates for children in polluted areas around the world-exhibit early AD, PD, FTLD, and ALS neuropathological hallmarks forecasting serious health, social, economic, academic, and judicial societal detrimental impact. Neurodegeneration prevention should be a public health priority as the problem of human exposure to particle pollution is solvable. We are knowledgeable of the main emission sources and the technological options to control them. What are we waiting for?
RESUMO
Amyotrophic lateral sclerosis (ALS) is a disease that progressively annihilates spinal cord motor neurons, causing severe motor decline and death. The disease is divided into familial and sporadic ALS. Mutations in the TAR DNA binding protein 43 (TDP-43) have been involved in the pathological emergence and progression of ALS, although the molecular mechanisms eliciting the disease are unknown. Transposable elements (TEs) and DNA sequences capable of transposing within the genome become dysregulated and transcribed in the presence of TDP-43 mutations. We performed RNA-Seq in human motor neurons (iMNs) derived from induced pluripotent stem cells (iPSCs) from TDP-43 wild-type-iMNs-TDP-43WT-and mutant-iMNs-TDP-43M337V-genotypes at 7 and 14 DIV, and, with state-of-the-art bioinformatic tools, analyzed whether TDP-43M337V alters both gene expression and TE activity. Our results show that TDP-43M337V induced global changes in the gene expression and TEs levels at all in vitro stages studied. Interestingly, many genetic pathways overlapped with that of the TEs activity, suggesting that TEs control the expression of several genes. TEs correlated with genes that played key roles in the extracellular matrix and RNA processing: all the regulatory pathways affected in ALS. Thus, the loss of TE regulation is present in TDP-43 mutations and is a critical determinant of the disease in human motor neurons. Overall, our results support the evidence that indicates TEs are critical regulatory sequences contributing to ALS neurodegeneration.
Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Elementos de DNA Transponíveis/genética , Neurônios Motores/metabolismo , Mutação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismoRESUMO
Environmental exposures to fine particulate matter (PM2.5) and ultrafine particle matter (UFPM) are associated with overlapping Alzheimer's, Parkinson's and TAR DNA-binding protein 43 (TDP-43) hallmark protein pathologies in young Metropolitan Mexico City (MMC) urbanites. We measured CSF concentrations of TDP-43 in 194 urban residents, including 92 MMC children aged 10.2 ± 4.7 y exposed to PM2.5 levels above the USEPA annual standard and to high UFPM and 26 low pollution controls (11.5 ± 4.4 y); 43 MMC adults (42.3 ± 15.9 y) and 14 low pollution adult controls (33.1 ± 12.0 y); and 19 amyotrophic lateral sclerosis (ALS) patients (52.4 ± 14.1 y). TDP-43 neuropathology and cisternal CSF data from 20 subjects15 MMC (41.1 ± 18.9 y) and 5 low pollution controls (46 ± 16.01 y)were included. CSF TDP-43 exponentially increased with age (p < 0.0001) and it was higher for MMC residents. TDP-43 cisternal CSF levels of 572 ± 208 pg/mL in 6/15 MMC autopsy cases forecasted TDP-43 in the olfactory bulb, medulla and pons, reticular formation and motor nuclei neurons. A 16 y old with TDP-43 cisternal levels of 1030 pg/mL exhibited TDP-43 pathology and all 15 MMC autopsy cases exhibited AD and PD hallmarks. Overlapping TDP-43, AD and PD pathologies start in childhood in urbanites with high exposures to PM2.5 and UFPM. Early, sustained exposures to PM air pollution represent a high risk for developing brains and MMC UFPM emissions sources ought to be clearly identified, regulated, monitored and controlled. Prevention of deadly neurologic diseases associated with air pollution ought to be a public health priority and preventive medicine is key.
RESUMO
There is a wide variety of neurodegenerative diseases, among which frontotemporal dementia stands out. These are the second most frequent cause of dementia in the world and demand the search for an effective treatment. This disease is linked to the abnormal behavior of proteins, which group together to form insoluble aggregates. It has been shown that the tau protein and TDP-43 are the main proteins involved in these pathologies. This article details 11 compounds already used in different neuropathologies, which may serve as potential drugs against these proteins. The mechanism of how most of these molecules inhibited the tau and TDP-43 aggregation process was highlighted. Importantly, Curcumin, Proanthocyanidin B2, Oleocanthal, Oleuropein Aglycone, Thionine, and Resveratrol had been reported as direct inhibitors of tau. While 4-aminoquinoline, Dimethoxycurcumin, and Auranofin directly inhibited TDP-43. Epigallocatechin- 3- gallate and Methylene Blue were described as tau and TDP-43 inhibitors. In this review, it is proposed that future research could elucidate the detailed inhibition mechanisms of these compounds to obtain relevant data to advance in treatments search for these coexisting proteins in frontotemporal dementia.
Assuntos
Curcumina , Demência Frontotemporal , Proantocianidinas , Auranofina , Curcumina/farmacologia , Curcumina/uso terapêutico , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/complicações , Demência Frontotemporal/tratamento farmacológico , Demência Frontotemporal/patologia , Humanos , Azul de Metileno , Resveratrol , Proteínas tau/metabolismoRESUMO
Quadruple aberrant hyperphosphorylated tau, beta-amyloid, α-synuclein and TDP-43 neuropathology and metal solid nanoparticles (NPs) are documented in the brains of children and young adults exposed to Metropolitan Mexico City (MMC) pollution. We investigated environmental NPs reaching noradrenergic and dopaminergic nuclei and the cerebellum and their associated ultrastructural alterations. Here, we identify NPs in the locus coeruleus (LC), substantia nigrae (SN) and cerebellum by transmission electron microscopy (TEM) and energy-dispersive X-ray spectrometry (EDX) in 197 samples from 179 MMC residents, aged 25.9 ± 9.2 years and seven older adults aged 63 ± 14.5 years. Fe, Ti, Hg, W, Al and Zn spherical and acicular NPs were identified in the SN, LC and cerebellar neural and vascular mitochondria, endoplasmic reticulum, Golgi, neuromelanin, heterochromatin and nuclear pore complexes (NPCs) along with early and progressive neurovascular damage and cerebellar endothelial erythrophagocytosis. Strikingly, FeNPs 4 ± 1 nm and Hg NPs 8 ± 2 nm were seen predominantly in the LC and SN. Nanoparticles could serve as a common denominator for misfolded proteins and could play a role in altering and obstructing NPCs. The NPs/carbon monoxide correlation is potentially useful for evaluating early neurodegeneration risk in urbanites. Early life NP exposures pose high risk to brains for development of lethal neurologic outcomes. NP emissions sources ought to be clearly recognized, regulated, and monitored; future generations are at stake.
RESUMO
Quadruple aberrant hyperphosphorylated tau (p-τ), amyloid-ß peptide, alpha-synuclein and TDP-43 brainstem and supratentorial pathology are documented in forensic ≤40y autopsies in Metropolitan Mexico City (MMC), and p-τ is the major aberrant protein. Post-traumatic stress disorder (PTSD) is associated with an elevated risk of subsequent dementia, and rapid eye movement sleep behavior disorder (RBD) is documented in PD, AD, Lewy body dementia and ALS. This study aimed to identify an association between PTSD and potential pRBD in Mexico. An anonymous online survey of 4502 urban college-educated adults, 29.3 ± 10.3 years; MMC, n = 1865; non-MMC, n = 2637, measured PTSD symptoms using the Impact of Event Scale-Revised (IES-R) and pRBD symptoms using the RBD Single-Question. Over 50% of the participants had IES-R scores ≥33 indicating probable PTSD. pRBD was identified in 22.6% of the participants across Mexico and 32.7% in MMC residents with PTSD. MMC subjects with PTSD had an OR 2.6218 [2.5348, 2.7117] of answering yes to the pRBD. PTSD and pRBD were more common in women. This study showed an association between PTSD and pRBD, strengthening the possibility of a connection with misfolded proteinopathies in young urbanites. We need to confirm the RBD diagnosis using an overnight polysomnogram. Mexican women are at high risk for stress and sleep disorders.
Assuntos
Transtorno do Comportamento do Sono REM , alfa-Sinucleína , Adulto , Peptídeos beta-Amiloides , Tronco Encefálico , Proteínas de Ligação a DNA , Feminino , Humanos , México/epidemiologia , Sono , alfa-Sinucleína/metabolismoRESUMO
TDP-43 is a major component of cytoplasmic inclusions observed in neurodegenerative diseases like frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). To further understand the role of TDP-43 in mRNA/protein metabolism and proteostasis, we used a combined approach with cellular and animal models overexpressing a cytoplasmic form of human TDP-43 (TDP-43-ΔNLS), recapitulating ALS/FTD features. We applied in HEK293 cells a method for labeling de novo translation, surface sensing of translation (SUnSET), based on puromycin (PURO) incorporation. While control cells displayed robust puromycilation, TDP-43-ΔNLS transfected cells exhibited reduced ongoing protein synthesis. Next, by using a transgenic mouse overexpressing cytoplasmic TDP-43 in the forebrain (TDP-43-ΔNLS mice) we assessed whether cytoplasmic TDP-43 regulates global translation in vivo. Polysome profiling of brain cortices from transgenic mice showed a shift toward non-polysomal fractions as compared to wild-type littermates, indicating a decrease in global translation. Lastly, cellular level translational assessment by SUNSET was performed in TDP-43-ΔNLS mice brain slices. Control mice slices incubated with PURO exhibited robust cytoplasmic PURO signal in layer 5 neurons from motor cortex, and normal nuclear TDP-43 staining. Neurons in TDP-43-ΔNLS mice slices incubated with PURO exhibited high cytoplasmic expression of TDP-43 and reduced puromycilation respect to control mice. These in vitro and in vivo results indicate that cytoplasmic TDP-43 decreases global translation and potentially cause functional/cytotoxic effects as observed in ALS/FTD. Our study provide in vivo evidence (by two independent and complementary methods) for a role of mislocalized TDP-43 in the regulation of global mRNA translation, with implications for TDP-43 proteinopathies.
RESUMO
Fine particulate air pollution (PM2.5) exposures are linked with Alzheimer's and Parkinson's diseases (AD,PD). AD and PD neuropathological hallmarks are documented in children and young adults exposed lifelong to Metropolitan Mexico City air pollution; together with high frontal metal concentrations (especially iron)-rich nanoparticles (NP), matching air pollution combustion- and friction-derived particles. Here, we identify aberrant hyperphosphorylated tau, É synuclein and TDP-43 in the brainstem of 186 Mexico City 27.29 ± 11.8y old residents. Critically, substantia nigrae (SN) pathology seen in mitochondria, endoplasmic reticulum and neuromelanin (NM) is co-associated with the abundant presence of exogenous, Fe-, Al- and Ti-rich NPs.The SN exhibits early and progressive neurovascular unit damage and mitochondria and NM are associated with metal-rich NPs including exogenous engineered Ti-rich nanorods, also identified in neuroenteric neurons. Such reactive, cytotoxic and magnetic NPs may act as catalysts for reactive oxygen species formation, altered cell signaling, and protein misfolding, aggregation and fibril formation. Hence, pervasive, airborne and environmental, metal-rich and magnetic nanoparticles may be a common denominator for quadruple misfolded protein neurodegenerative pathologies affecting urbanites from earliest childhood. The substantia nigrae is a very early target and the gastrointestinal tract (and the neuroenteric system) key brainstem portals. The ultimate neural damage and neuropathology (Alzheimer's, Parkinson's and TDP-43 pathology included) could depend on NP characteristics and the differential access and targets achieved via their portals of entry. Thus where you live, what air pollutants you are exposed to, what you are inhaling and swallowing from the air you breathe,what you eat, how you travel, and your occupational longlife history are key. Control of NP sources becomes critical.
Assuntos
Doença de Alzheimer , Nanopartículas de Magnetita , Nanotubos , Tronco Encefálico , Criança , Cidades , Trato Gastrointestinal , Humanos , México , Agregados Proteicos , Titânio/toxicidade , Adulto Jovem , alfa-SinucleínaRESUMO
Dysregulation of TAR DNA-binding protein 43 (TDP-43) is a hallmark feature of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases. TDP-43 is a ubiquitously expressed RNA-binding protein with many physiological functions, playing a role in multiple aspects of RNA metabolism. We developed transgenic mice conditionally overexpressing human wild-type TDP-43 protein (hTDP-43-WT) in forebrain neurons, a model that recapitulates several key features of FTD. After post-weaning transgene (TG) induction during 1 month, these mice display an early behavioral phenotype, including impaired cognitive and social function with no substantial motor abnormalities. In order to expand the analysis of this model, we took advantage of the temporal and regional control of TG expression possible in these mice. We behaviorally evaluated mice at two different times: after 2 weeks of post-weaning TG induction (0.5 month group) and after subsequent TG suppression for 2 weeks following that time point [1 month (sup) group]. We found no cognitive abnormalities after 0.5 month of hTDP-43 expression, evaluated with a spatial working memory task (Y-maze test). Suppression of TG expression with doxycycline (Dox) at this time point prevented the development of cognitive deficits previously observed at 1 month post-induction, as revealed by the performance of the 1 month (sup) group. On the other hand, sociability deficits (assessed through the social interaction test) appeared very rapidly after Dox removal (0.5 month) and TG suppression was not sufficient to reverse this phenotype, indicating differential vulnerability to hTDP-43 expression and suppression. Animals evaluated at the early time point (0.5 month) post-induction do not display a motor phenotype, in agreement with the results obtained after 1 month of TG expression. Moreover, all motor tests (open field, accelerated rotarod, limb clasping, hanging wire grip) showed identical responses in both control and bigenic animals in the suppressed group, demonstrating that this protocol and treatment do not cause non-specific effects in motor behavior, which could potentially mask the phenotypes in other domains. Our results show that TDP-43-WT mice have a phenotype that qualifies them as a useful model of FTD and provide valuable information for susceptibility windows in therapeutic strategies for TDP-43 proteinopathies.
RESUMO
BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a multifactorial fatal motoneuron disease without a cure. Ten percent of ALS cases can be pointed to a clear genetic cause, while the remaining 90% is classified as sporadic. Our study was aimed to uncover new connections within the ALS network through a bioinformatic approach, by which we identified C13orf18, recently named Pacer, as a new component of the autophagic machinery and potentially involved in ALS pathogenesis. METHODS: Initially, we identified Pacer using a network-based bioinformatic analysis. Expression of Pacer was then investigated in vivo using spinal cord tissue from two ALS mouse models (SOD1G93A and TDP43A315T) and sporadic ALS patients. Mechanistic studies were performed in cell culture using the mouse motoneuron cell line NSC34. Loss of function of Pacer was achieved by knockdown using short-hairpin constructs. The effect of Pacer repression was investigated in the context of autophagy, SOD1 aggregation, and neuronal death. RESULTS: Using an unbiased network-based approach, we integrated all available ALS data to identify new functional interactions involved in ALS pathogenesis. We found that Pacer associates to an ALS-specific subnetwork composed of components of the autophagy pathway, one of the main cellular processes affected in the disease. Interestingly, we found that Pacer levels are significantly reduced in spinal cord tissue from sporadic ALS patients and in tissues from two ALS mouse models. In vitro, Pacer deficiency lead to impaired autophagy and accumulation of ALS-associated protein aggregates, which correlated with the induction of cell death. CONCLUSIONS: This study, therefore, identifies Pacer as a new regulator of proteostasis associated with ALS pathology.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Autofagia/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismoRESUMO
OBJECTIVE: To perform a systematic review and meta-analysis on the prevalence of transactive response DNA-binding protein 43 (TDP-43) proteinopathy in cognitively normal older adults. METHODS: We systematically reviewed and performed a meta-analysis on the prevalence of TDP-43 proteinopathy in older adults with normal cognition, evaluated by the Mini-Mental State Examination or the Clinical Dementia Rating. We estimated the overall prevalence of TDP-43 using random-effect models, and stratified by age, sex, sample size, study quality, antibody used to assess TDP-43 aggregates, analysed brain regions, Braak stage, Consortium to Establish a Registry for Alzheimer's Disease score, hippocampal sclerosis and geographic location. RESULTS: A total of 505 articles were identified in the systematic review, and 7 were included in the meta-analysis with 1196 cognitively normal older adults. We found an overall prevalence of TDP-43 proteinopathy of 24%. Prevalence of TDP-43 proteinopathy varied widely across geographic location (North America: 37%, Asia: 29%, Europe: 14%, and Latin America: 11%). Estimated prevalence of TDP-43 proteinopathy also varied according to study quality (quality score >7: 22% vs. quality score <7: 42%), antibody used to assess TDP-43 proteinopathy (native: 18% vs. hyperphosphorylated: 24%) and presence of hippocampal sclerosis (without 24% vs. with hippocampal sclerosis: 48%). Other stratified analyses by age, sex, analysed brain regions, sample size and severity of AD neuropathology showed similar pooled TDP-43 prevalence. CONCLUSIONS: Different methodology to access TDP-43, and also differences in lifestyle and genetic factors across different populations could explain our results. Standardization of TDP-43 measurement, and future studies about the impact of genetic and lifestyle characteristics on the development of neurodegenerative diseases are needed.
Assuntos
Encéfalo/patologia , Cognição/fisiologia , Proteinopatias TDP-43/epidemiologia , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Prevalência , Proteinopatias TDP-43/diagnóstico , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologiaRESUMO
INTRODUCTION: TDP-43 is an intranuclear protein involved in many cellular processes. When altered, it shows a change in pattern of distribution, as well as in functioning, throughout the Central Nervous System structures. Frontotemporal Lobar Degeneration (FTLD) and Amyotrophic Lateral Sclerosis (ALS) are examples of TDP-43 proteinopathy. These disorders form a clinical spectrum, with some patients having a pure cognitive disorder while others also exhibit motor features. METHODS: We studied two donated brains from patients with a diagnosis of Frontotemporal Dementia (FTD), one of which was associated with ALS (ALS-FTD). After fixation and macroscopic examinations, sample analyses were performed. Specific regions were chosen for the application of immunohistochemistry (IHC) with anti-Aß, AT8, anti-α-synuclein and anti-phospho-TDP-43. RESULTS: Both brains presented anti-phospho-TDP-43 positivity, but this was not equally distributed throughout the encephalic zones. In the FTD case, the studied brain presented phosphorylated TDP-43- in the frontal cortex, hippocampus, entorhinal cortex and mesencephalon; in the ALS-FTD case, the abnormal protein was also seen in the pons and medulla oblongata. The brain in the ALS-FTD case presented Aß and AT8 positivity in the hippocampus and entorhinal cortex (Braak I and II). DISCUSSION: The hypothesis supported by scientific literature that these neurodegenerative diseases can have the same etiology with distinct encephalic region involvement is corroborated by the present study.
INTRODUÇÃO: TDP-43 é uma proteína intranuclear envolvida em vários processos celulares. Essa molécula, quando alterada, mostra padrões de distribuição modificados, assim como de funcionamento, ao longo das estruturas do Sistema Nervoso Central. A Degeneração Lobar Frontotemporal (DLFT) e a Esclerose Lateral Amiotrófica (ELA) são dois exemplos de proteinopatia de TDP-43. Esses transtornos formam um espectro clínico, com alguns pacientes apresentando um transtorno cognitivo puro enquanto outros também apresentam disfunções motoras. MÉTODOS: Nós estudamos dois cérebros doados de pacientes com diagnóstico de Demência Frontotemporal (DFT), um dos quais se associava com ELA (ELA-DFT). Após fixação e exame macroscópico, foram realizadas análises de amostras. Regiões específicas foram escolhidas para aplicação de imunohistoquímica (IHQ) com anti-Aß, AT8, anti-α-sinucleina e anti-fosfo-TDP-43. RESULTADOS: Ambos os cérebros foram positivos para anti-fosfo-TDP-43, mas de forma não igualmente distribuida pelas regiões encefálicas. No caso DFT, o cérebro estudado apresentou TDP-43-fosforilada no córtex frontal, hipocampo, córtex entorrinal e mesencéfalo; no caso ELA-DFT, a proteína anormal também foi vista na ponte e no bulbo. O cérebro do caso ELA-DFT foi positivo para Aß e AT8 no hipocampo e no córtex entorrinal (Braak I e II). DISCUSSÃO: O presente estudo corrobora a hipótese atualmente sustentada pela literatura científica de que essas duas doenças neurodegenerativas possuem a mesma etiologia, mas acometem regiões encefálicas distintas.
RESUMO
ABSTRACT. INTRODUCTION: TDP-43 is an intranuclear protein involved in many cellular processes. When altered, it shows a change in pattern of distribution, as well as in functioning, throughout the Central Nervous System structures. Frontotemporal Lobar Degeneration (FTLD) and Amyotrophic Lateral Sclerosis (ALS) are examples of TDP-43 proteinopathy. These disorders form a clinical spectrum, with some patients having a pure cognitive disorder while others also exhibit motor features. METHODS: We studied two donated brains from patients with a diagnosis of Frontotemporal Dementia (FTD), one of which was associated with ALS (ALS-FTD). After fixation and macroscopic examinations, sample analyses were performed. Specific regions were chosen for the application of immunohistochemistry (IHC) with anti-Aß, AT8, anti-α-synuclein and anti-phospho-TDP-43. RESULTS: Both brains presented anti-phospho-TDP-43 positivity, but this was not equally distributed throughout the encephalic zones. In the FTD case, the studied brain presented phosphorylated TDP-43- in the frontal cortex, hippocampus, entorhinal cortex and mesencephalon; in the ALS-FTD case, the abnormal protein was also seen in the pons and medulla oblongata. The brain in the ALS-FTD case presented Aß and AT8 positivity in the hippocampus and entorhinal cortex (Braak I and II). DISCUSSION: The hypothesis supported by scientific literature that these neurodegenerative diseases can have the same etiology with distinct encephalic region involvement is corroborated by the present study.
RESUMO. INTRODUÇÃO: TDP-43 é uma proteína intranuclear envolvida em vários processos celulares. Essa molécula, quando alterada, mostra padrões de distribuição modificados, assim como de funcionamento, ao longo das estruturas do Sistema Nervoso Central. A Degeneração Lobar Frontotemporal (DLFT) e a Esclerose Lateral Amiotrófica (ELA) são dois exemplos de proteinopatia de TDP-43. Esses transtornos formam um espectro clínico, com alguns pacientes apresentando um transtorno cognitivo puro enquanto outros também apresentam disfunções motoras. MÉTODOS: Nós estudamos dois cérebros doados de pacientes com diagnóstico de Demência Frontotemporal (DFT), um dos quais se associava com ELA (ELA-DFT). Após fixação e exame macroscópico, foram realizadas análises de amostras. Regiões específicas foram escolhidas para aplicação de imunohistoquímica (IHQ) com anti-Aß, AT8, anti-α-sinucleina e anti-fosfo-TDP-43. RESULTADOS: Ambos os cérebros foram positivos para anti-fosfo-TDP-43, mas de forma não igualmente distribuida pelas regiões encefálicas. No caso DFT, o cérebro estudado apresentou TDP-43-fosforilada no córtex frontal, hipocampo, córtex entorrinal e mesencéfalo; no caso ELA-DFT, a proteína anormal também foi vista na ponte e no bulbo. O cérebro do caso ELA-DFT foi positivo para Aß e AT8 no hipocampo e no córtex entorrinal (Braak I e II). DISCUSSÃO: O presente estudo corrobora a hipótese atualmente sustentada pela literatura científica de que essas duas doenças neurodegenerativas possuem a mesma etiologia, mas acometem regiões encefálicas distintas.
Assuntos
Humanos , Doença dos Neurônios Motores , Demência Frontotemporal , Proteinopatias TDP-43 , NeuropatologiaRESUMO
Perry syndrome (PS) is a rare hereditary neurodegenerative disease characterized by autosomal dominant parkinsonism, psychiatric symptoms, weight loss, central hypoventilation, and distinct TDP-43 pathology. The mutated causative gene for PS is DCTN1, which encodes the dynactin subunit p150Glued. Dynactin is a motor protein involved in axonal transport; the p150Glued subunit has a critical role in the overall function. Since the discovery of DCTN1 in PS, it has been increasingly recognized that DCTN1 mutations can exhibit more diverse phenotypes than previously thought. Progressive supranuclear palsy- and/or frontotemporal dementia-like phenotypes have been associated with the PS phenotypes. In addition, DCTN1 mutations were identified in a family with motor-neuron disease before the discovery in PS. In this review, we analyze the clinical and genetic aspects of DCTN1-related neurodegeneration and discuss its pathogenesis. We also describe three families with PS, Canadian, Polish, and Brazilian. DCTN1 mutation was newly identified in two of them, the Canadian and Polish families. The Canadian family was first described in late 1970's but was never genetically tested. We recently had the opportunity to evaluate this family and to test the gene status of an affected family member. The Polish family is newly identified and is the first PS family in Poland. Although still rare, DCTN1-related neurodegeneration needs to be considered in a differential diagnosis of parkinsonian disorders, frontotemporal dementia, and motor-neuron diseases, especially if there is family history.
Assuntos
Complexo Dinactina/genética , Hipoventilação/genética , Mutação/genética , Doenças Neurodegenerativas/genética , Transtornos Parkinsonianos/genética , Brasil , Canadá , Depressão/genética , Depressão/patologia , Saúde da Família , Feminino , Predisposição Genética para Doença , Humanos , Hipoventilação/patologia , Masculino , Transtornos Parkinsonianos/patologia , Fenótipo , PolôniaRESUMO
Autophagy is a catabolic mechanism where intracellular material is degraded by vesicular structures called autophagolysosomes. Autophagy is necessary to maintain the normal function of the central nervous system (CNS), avoiding the accumulation of misfolded and aggregated proteins. Consistently, impaired autophagy has been associated with the pathogenesis of various neurodegenerative diseases. The proteins TAR DNA-binding protein-43 (TDP-43), which regulates RNA processing at different levels, and chromosome 9 open reading frame 72 (C9orf72), probably involved in membrane trafficking, are crucial in the development of neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Additionally, recent studies have identified a role for these proteins in the control of autophagy. In this manuscript, we review what is known regarding the autophagic mechanism and discuss the involvement of TDP-43 and C9orf72 in autophagy and their impact on neurodegenerative diseases.
RESUMO
Los agregados de TDP-43 representan una de las característica histopatológicas más importantes de varias enfermedades neurodegenerativas, entre las que se incluye la Esclerosis Lateral Amiotrófica (ELA). TDP-43 está localizada principalmente en el núcleo. Sin embargo, los pacientes afectados por ELA presentan agregados de TDP-43 en el citoplasma de las neuronas comprometidas, con lo que se despoja al núcleo de TDP-43 funcional. Aún se desconoce si la degeneración causada por la agregación de TDP-43 es debida a una toxicidad intrínseca de los agregados o a la pérdida de función de TDP-43 como consecuencia del vaciamiento del núcleo. Varias investigaciones, incluidas las de estos autores, indican que la pérdida de función es el factor fundamental responsable de la neurodegeneración observada en presencia de inclusiones de TDP-43. Por otro lado, aún no existen tratamientos efectivos para la ELA. Por lo tanto, es de crucial importancia conocer las bases moleculares que conllevan al desarrollo de la enfermedad, con el objetivo de encontrar posibles estrategias terapéuticas. Para ello, estos autores han desarrollado un modelo celular capaz de imitar la agregación de TDP-43 y sus consecuencias. Finalmente, se ha utilizado este modelo para analizar el efecto de diferentes compuestos capaces de degradar los agregados de TDP-43 y se ha demostrado que esta podría ser una estrategia terapéutica válida para la ELA.
TDP-43 inclusions are important histopathological features of various neurodegenerative disorders, including Amyotrophic Lateral Sclerosis (ALS). TDP-43 is mainly a nuclear protein, but it shuffles from the nucleus to the cytoplasm. In patients’ brains, TDP-43 is retained in the cytoplasm of the affected motorneurons to form insoluble aggregates, which results in TDP-43 nuclear clearance. There is still no consensus whether TDP-43-mediated neurodegeneration results from a gain or loss of function of the protein or a combination of both. The work from several laboratories, including this, points towards a strong loss of function component. On the other hand, there is no effective treatment or cure for ALS. Thus, there is obviously a need to find new therapeutic strategies for ALS. In order to gain new insights into the molecular mechanism of the disease, and with the aim of looking for new methodologies that can revert it, a cellular model of TDP-43 aggregation that can mimic the phenotypic consequences found in ALS patients has been developed. Finally, this model was used to search for compounds that can dissolve these aggregates, and it was shown that the clearance of TDP-43 aggregates could be a therapeutic strategy for ALS.
Os agregados proteicos TDP-43 são características histopatológicas importantes de muitas doenças neurodegenerativas, incluindo a Esclerose Lateral Amiotrófica (ALS). A proteína TDP-43 se localiza principalmente no núcleo, porém nos cérebros de indivíduos afetados, a proteína TDP-43 fica retida no citoplasma dos neurônios motores, o que leva a formação de agregados insolúveis, resultando em deposição nuclear. Ainda não existe um consenso se a neurodegeneração mediada por TDP43 é causada por ganho ou perda da função da proteína ou uma combinação de ambos. O trabalho de muitos laboratórios, bem como este trabalho, apontam para uma forte perda da função da proteína. Por outro lado, não existe um tratamento efetivo ou cura para a ALS. Portanto, existe uma grande necessidade de identificar novos tratamentos para a ALS. Para entender o mecanismo molecular da doença, e com o objetivo de identificar novas metodologias para reverter a doença, desenvolvemos o modelo celular de agregados de TDP-43, o qual mimetiza as consequências fenotípicas encontradas em pacientes com ALS. Por fim, utilizamos esse modelo para identificar compostos que podem dissolver os agregados, e demonstramos que a liberação de inclusões de TDP-43 poderiam ser usados como tratamentos para a ALS.
Assuntos
Esclerose Lateral Amiotrófica/terapia , Proteinopatias TDP-43/classificação , Impacto Agregado , Esclerose Lateral Amiotrófica/complicações , Proteinopatias TDP-43/terapiaRESUMO
Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.
RESUMO
Transactive response DNA binding protein 43 (TDP-43) proteinopathy is the major hallmark of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. It is also present in a subset of Alzheimer's disease cases. Recently, few reports showed TDP-43 changes in cognitively normal elderly. In Caucasians, TDP-43 proteinopathy independently correlate with cognitive decline. However, it is challenging to establish direct links between cognitive and/or neuropsychiatric symptoms and protein inclusions in neurodegenerative diseases because individual cognitive reserves modify the threshold for clinical disease expression. Cognitive reserve is influenced by demographic, environmental and genetic factors. We investigated the relationships between demographic, clinical and neuropathological variables and TDP-43 proteinopathy in a large multiethnic sample of cognitively normal elderly. TDP-43 proteinopathy was identified in 10.5%, independently associated with older age (P = 0.03) and Asian ethnicity (P = 0.002). Asians showed a higher prevalence of TDP-43 proteinopathy than Caucasians, even after adjustment for sex, age, Braak stage and schooling (odds ratio = 3.50, confidence interval 1.41-8.69, P = 0.007). These findings suggested that Asian older adults may be protected from the clinical manifestation of brain TDP-43 proteinopathy. Future studies are needed to identify possible race-related protective factors against clinical expression of TDP-43 proteinopathies.