Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pathogens ; 11(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36145420

RESUMO

Human trypanosomiasis affects nearly eight million people worldwide, causing great economic and social impact, mainly in endemic areas. T. cruzi and T. brucei are protozoan parasites that present efficient mechanisms of immune system evasion, leading to disease chronification. Currently, there is no vaccine, and chemotherapy is effective only in the absence of severe clinical manifestations. Nevertheless, resistant phenotypes to chemotherapy have been described in protozoan parasites, associated with cross-resistance to other chemically unrelated drugs. Multidrug resistance is multifactorial, involving: (i) drug entry, (ii) activation, (iii) metabolism and (iv) efflux pathways. In this context, ABC transporters, initially discovered in resistant tumor cells, have drawn attention in protozoan parasites, owing to their ability to decrease drug accumulation, thus mitigating their toxic effects. The discovery of these transporters in the Trypanosomatidae family started in the 1990s; however, few members were described and functionally characterized. This review contains a brief history of the main ABC transporters involved in resistance that propelled their investigation in Trypanosoma species, the main efflux modulators, as well as ABC genes described in T. cruzi and T. brucei according to the nomenclature HUGO. We hope to convey the importance that ABC transporters play in parasite physiology and chemotherapy resistance.

2.
Curr Med Chem ; 29(13): 2334-2381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34533436

RESUMO

Scaffolds of metal-based compounds can act as pharmacophore groups in several ligands to treat various diseases, including tropical infectious diseases (TID). In this review article, we investigate the contribution of these moieties to medicinal inorganic chemistry in the last seven years against TID, including American trypanosomiasis (Chagas disease), human African trypanosomiasis (HAT, sleeping sickness), leishmania, and malaria. The most potent metal-based complexes are displayed and highlighted in figures, tables and graphics; according to their pharmacological activities (IC50 > 10µM) against Trypanosomatids and Plasmodium spp parasites. We highlight the current progresses and viewpoints of these metal-based complexes, with a specific focus on drug discovery.


Assuntos
Doença de Chagas , Parasitos , Plasmodium , Trypanosoma cruzi , Tripanossomíase Africana , Animais , Doença de Chagas/tratamento farmacológico , Descoberta de Drogas , Humanos , Tripanossomíase Africana/tratamento farmacológico
3.
ChemMedChem ; 16(6): 966-975, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33078573

RESUMO

Neglected tropical diseases remain among the most critical public health concerns in Africa and South America. The drug treatments for these diseases are limited, which invariably leads to fatal cases. Hence, there is an urgent need for new antitrypanosomal drugs. To address this issue, a large number of diverse heterocyclic compounds were prepared. Straightforward synthetic approaches tolerated pre-functionalized structures, giving rise to a structurally diverse set of analogs. We report on a set of 57 heterocyclic compounds with selective activity potential against kinetoplastid parasites. In general, 29 and 19 compounds of the total set could be defined as active against Trypanosoma cruzi and T. brucei brucei, respectively (antitrypanosomal activities <10 µM). The present work discusses the structure-activity relationships of new fused-ring scaffolds based on imidazopyridine/pyrimidine and furopyridine cores. This library of compounds shows significant potential for anti-trypanosomiases drug discovery.


Assuntos
Imidazóis/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomíase/tratamento farmacológico , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Piridinas/síntese química , Piridinas/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química
4.
Curr Pharm Des ; 27(15): 1807-1824, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33167829

RESUMO

Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited, and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo is essential for the development of a novel, specific and safe derivative, minimizing adverse effects.


Assuntos
Doença de Chagas , Leishmaniose , Naftoquinonas , Trypanosoma brucei brucei , Trypanosoma cruzi , Animais , Naftoquinonas/farmacologia
5.
Infect Genet Evol ; 63: 370-379, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28688979

RESUMO

Trypanosomes of African wild ungulates transmitted by tsetse flies can cause human and livestock diseases. However, trypanosome diversity in wild tsetse flies remains greatly underestimated. We employed FFLB (fluorescent fragment length barcoding) for surveys of trypanosomes in tsetse flies (3086) from the Gorongosa National Park (GNP) and Niassa National Reserve (NNR) in Mozambique (MZ), identified as Glossina morsitans morsitans (GNP/NNR=77.6%/90.5%) and Glossina pallidipes (22.4%/9.5%). Trypanosomes were microscopically detected in 8.3% of tsetse guts. FFLB of gut samples revealed (GNP/NNR): Trypanosoma congolense of Savannah (27%/63%), Kilifi (16.7%/29.7%) and Forest (1.0%/0.3%) genetic groups; T. simiae Tsavo (36.5%/6.1%); T. simiae (22.2%/17.7%); T. godfreyi (18.2%/7.0%); subgenus Trypanozoon (20.2%/25.7%); T. vivax/T. vivax-like (1.5%/5.2%); T. suis/T. suis-like (9.4%/11.9%). Tsetse proboscises exhibited similar species composition, but most prevalent species were (GNP/NNR): T. simiae (21.9%/28%), T. b. brucei (19.2%/31.7%), and T. vivax/T. vivax-like (19.2%/28.6%). Flies harboring mixtures of trypanosomes were common (~ 64%), and combinations of more than four trypanosomes were especially abundant in the pristine NNR. The non-pathogenic T. theileri was found in 2.5% while FFLB profiles of unknown species were detected in 19% of flies examined. This is the first report on molecular diversity of tsetse flies and their trypanosomes in MZ; all trypanosomes pathogenic for ungulates were detected, but no human pathogens were detected. Overall, two species of tsetse flies harbor 12 species/genotypes of trypanosomes. This notable species richness was likely uncovered because flies were captured in wildlife reserves and surveyed using the method of FFLB able to identify, with high sensitivity and accuracy, known and novel trypanosomes. Our findings importantly improve the knowledge on trypanosome diversity in tsetse flies, revealed the greatest species richness so far reported in tsetse fly of any African country, and indicate the existence of a hidden trypanosome diversity to be discovered in African wildlife protected areas.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Variação Genética , Trypanosoma brucei brucei/genética , Trypanosoma congolense/genética , Trypanosoma vivax/genética , Trypanosoma/genética , Moscas Tsé-Tsé/parasitologia , Animais , Animais Selvagens/parasitologia , Artiodáctilos/parasitologia , Genótipo , Humanos , Intestinos/parasitologia , Gado/parasitologia , Moçambique , Parques Recreativos , Perissodáctilos/parasitologia , Trypanosoma/classificação , Trypanosoma/isolamento & purificação , Trypanosoma/patogenicidade , Trypanosoma brucei brucei/classificação , Trypanosoma brucei brucei/isolamento & purificação , Trypanosoma brucei brucei/patogenicidade , Trypanosoma congolense/classificação , Trypanosoma congolense/isolamento & purificação , Trypanosoma congolense/patogenicidade , Trypanosoma vivax/classificação , Trypanosoma vivax/isolamento & purificação , Trypanosoma vivax/patogenicidade , Moscas Tsé-Tsé/classificação
6.
Mol Biochem Parasitol ; 205(1-2): 16-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26996431

RESUMO

The trypanosome life cycle consists of a series of developmental forms each adapted to an environment in the relevant insect and/or mammalian host. The differentiation process from the mammalian bloodstream form to the insect-midgut procyclic form in Trypanosoma brucei occurs in two steps in vivo. First proliferating 'slender' bloodstream forms differentiate to non-dividing 'stumpy' forms arrested in G1. Second, in response to environmental cues, stumpy bloodstream forms re-enter the cell cycle and start to proliferate as procyclic forms after a lag during which both cell morphology and gene expression are modified. Nearly all arrested cells have lower rates of protein synthesis when compared to the proliferating equivalent. In eukaryotes, one mechanism used to regulate the overall rate of protein synthesis involves phosphorylation of the alpha subunit of initiation factor eIF2 (eIF2α). The effect of eIF2α phosphorylation is to prevent the action of eIF2B, the guanine nucleotide exchange factor that activates eIF2 for the next rounds of initiation. To investigate the role of the phosphorylation of eIF2α in the life cycle of T. brucei, a cell line was made with a single eIF2α gene that contained the phosphorylation site, threonine 169, mutated to alanine. These cells were capable of differentiating from proliferating bloodstream form cells into arrested stumpy forms in mice and into procyclic forms in vitro and in tsetse flies. These results indicate that translation attenuation mediated by the phosphorylation of eIF2α on threonine 169 is not necessary for the cell cycle arrest associated with these differentiation processes.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/metabolismo , Tripanossomíase/parasitologia , Animais , Linhagem Celular , Fator de Iniciação 2 em Eucariotos/química , Camundongos , Mutação , Iniciação Traducional da Cadeia Peptídica , Fosforilação , Proteínas de Protozoários/química , Treonina/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Moscas Tsé-Tsé/parasitologia
7.
Mem. Inst. Oswaldo Cruz ; 109(3): 315-323, 06/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-711722

RESUMO

Megazol (7) is a 5-nitroimidazole that is highly active against Trypanosoma cruzi and Trypanosoma brucei, as well as drug-resistant forms of trypanosomiasis. Compound 7 is not used clinically due to its mutagenic and genotoxic properties, but has been largely used as a lead compound. Here, we compared the activity of 7 with its 4H-1,2,4-triazole bioisostere (8) in bloodstream forms of T. brucei and T. cruzi and evaluated their activation by T. brucei type I nitroreductase (TbNTR) enzyme. We also analysed the cytotoxic and genotoxic effects of these compounds in whole human blood using Comet and fluorescein diacetate/ethidium bromide assays. Although the only difference between 7 and 8 is the substitution of sulphur (in the thiadiazole in 7) for nitrogen (in the triazole in 8), the results indicated that 8 had poorer antiparasitic activity than 7 and was not genotoxic, whereas 7 presented this effect. The determination of Vmax indicated that although 8 was metabolised more rapidly than 7, it bounds to the TbNTR with better affinity, resulting in equivalent kcat/KM values. Docking assays of 7 and 8 performed within the active site of a homology model of the TbNTR indicating that 8 had greater affinity than 7.


Assuntos
Animais , Humanos , Masculino , Camundongos , Nitrorredutases/efeitos dos fármacos , Tiadiazóis , Triazóis , Tripanossomicidas , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Nitrorredutases/metabolismo , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tiadiazóis/química , Tiadiazóis/metabolismo , Tiadiazóis/farmacologia , Tiadiazóis/toxicidade , Triazóis/química , Triazóis/metabolismo , Triazóis/farmacologia , Triazóis/toxicidade , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Tripanossomicidas/toxicidade , Trypanosoma cruzi/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA