RESUMO
The SARS-CoV-2 virus responsible for the COVID-19 pandemic has profoundly impacted global health, economics, and society. This review seeks to encompass an overview of current knowledge on COVID-19, including its transmission, pathogenesis, and clinical presentation related to various systems within the human body. COVID-19 is a highly contagious illness that has rapidly spread worldwide. As of August 4, 2023, the WHO reported over 570 million confirmed cases of COVID-19 and over 6.3 million deaths. Although the virus is most common in adults, children can also be infected. Respiratory droplets that are produced when an infected person coughs or sneezes are the primary transmission mode for COVID-19. Additionally, the virus can be disseminated via contact with contaminated surfaces or objects, as it can remain viable for several hours or days. SARS-CoV-2 is a respiratory virus that enters cells by bonding with the angiotensin-converting enzyme 2 (ACE2) receptor. Once inside the cell, the virus replicates and produces new particles that can infect other cells. Interestingly, the effects of post-acute sequelae of SARS-CoV-2 infection (PASC) encompass more than just respiratory system. The findings presented in the data suggest that PASC significantly impacts multiple organs and their respective physiological processes. In light of these observations, we aim to provide a detailed discussion of the relevant findings in this paper. Through our review, we hope to provide healthcare professionals with a deeper understanding of the effects of PASC on the human body, which could ultimately lead to improved patient outcomes and treatment strategies.
RESUMO
A few studies examined the comparative side effects of Coronavirus Disease-19 (COVID-19) vaccines. We compared the extension and severity of self-reported side effects of seven COVID-19 vaccines [BNT162b2 (Pfizer-BioNTech), ChAdOx1 (AstraZeneca), mRNA-1273 (Moderna), CoronaVac (Sinovac Life Sciences), Gam-COVID-Vac (Gamaleya's Sputnik V), Ad5-nCoV (CanSinoBIO), and Ad26.CoV2.S (Johnson & Johnson/Janssen)] in the Mexican population. We also evaluated the association of type of vaccine, sex, age, comorbidity, and history of allergies to the extent and severity of side effects. This was a cross-sectional study carried out online between August 12 and September 3, 2021 in Mexico. The first inclusion criterion was to receive a COVID-19 vaccine and the second, being at least 18 years old. The survey link was distributed via multiple social media platforms. We questioned about the type of vaccine and symptoms based on short-term side effects reported in the literature. Side effect extension was classified as local, systemic, or both. We asked about the need to take medicine, stop activities/miss work, or seek medical attention. Then, a severity index was constructed based on responses. Descriptive and stepwise multivariate logistic ordinal regression analyses were used to calculate odds ratio (OR) and 95% CI for each outcome adjusted by potential confounders. The mean age was 38.9 ± 11.0 years (n = 4,024). Prevalence of at least one side effect varied between vaccines and by a number of doses. At dose 1, ChAdOx1 was the vaccine with the highest rate of at least one side effect (85%) followed by Gam-COVID-Vac (80%). Both were associated to greater extension (adjusted OR 2.53, 95% CI 2.16, 2.96 and adjusted OR 2.41, 95% CI 1.76, 3.29, respectively) and severity of side effects (adjusted OR 4.32, 95% CI 3.73, 5.00 and adjusted OR 3.00, 95% CI 2.28, 3.94, respectively). Young age (<50 years), female sex, comorbidity, and history of allergies were associated with greater extension and severity, independent of the type of vaccine and potential confounders. At dose 2, mRNA-1273 was the vaccine with the highest rate of side effects (88%) and the only vaccine associated to greater extension (adjusted OR 2.88, 95% CI 1.59, 5.21) and severity of symptoms (adjusted OR 3.14, 95% CI 1.82, 5.43). Continuous studies are necessary to acknowledge more post-vaccine symptoms in different populations.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Ad26COVS1 , Adolescente , Adulto , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Estudos Transversais , Feminino , Humanos , México/epidemiologia , Pessoa de Meia-Idade , AutorrelatoRESUMO
Heat-labile toxin I (LT-I), produced by strains of enterotoxigenic Escherichia coli (ETEC), causes profuse watery diarrhea in humans. Different in vitro and in vivo models have already elucidated the mechanism of action of this toxin; however, their use does not always allow for more specific studies on how the LT-I toxin acts in systemic tracts and intestinal cell lines. In the present work, zebrafish (Danio rerio) and human intestinal cells (Caco-2) were used as models to study the toxin LT-I. Caco-2 cells were used, in the 62nd passage, at different cell concentrations. LT-I was conjugated to FITC to visualize its transport in cells, as well as microinjected into the caudal vein of zebrafish larvae, in order to investigate its effects on survival, systemic traffic, and morphological formation. The internalization of LT-I was visualized in 3 × 104 Caco-2 cells, being associated with the cell membrane and nucleus. The systemic traffic of LT-I in zebrafish larvae showed its presence in the cardiac cavity, yolk, and regions of the intestine, as demonstrated by cardiac edema (100%), the absence of a swimming bladder (100%), and yolk edema (80%), in addition to growth limitation in the larvae, compared to the control group. There was a reduction in heart rate during the assessment of larval survival kinetics, demonstrating the cardiotoxic effect of LT-I. Thus, in this study, we provide essential new depictions of the features of LT-I.
Assuntos
Toxinas Bacterianas/toxicidade , Escherichia coli Enterotoxigênica , Enterotoxinas/toxicidade , Proteínas de Escherichia coli/toxicidade , Animais , Toxinas Bacterianas/farmacocinética , Células CACO-2 , Edema/induzido quimicamente , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Enterotoxinas/farmacocinética , Proteínas de Escherichia coli/farmacocinética , Cardiopatias Congênitas/induzido quimicamente , Frequência Cardíaca/efeitos dos fármacos , Humanos , Intestinos/metabolismo , Miocárdio/metabolismo , Saco Vitelino/efeitos dos fármacos , Peixe-Zebra/anormalidades , Peixe-Zebra/metabolismoRESUMO
The COVID-19 pandemic has infected millions worldwide, leaving a global burden for long-term care of COVID-19 survivors. It is thus imperative to study post-COVID (i.e., short-term) and long-COVID (i.e., long-term) effects, specifically as local and systemic pathophysiological outcomes of other coronavirus-related diseases (such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS)) were well-cataloged. We conducted a comprehensive review of adverse post-COVID health outcomes and potential long-COVID effects. We observed that such adverse outcomes were not localized. Rather, they affected different human systems, including: (i) immune system (e.g., Guillain-Barré syndrome, rheumatoid arthritis, pediatric inflammatory multisystem syndromes such as Kawasaki disease), (ii) hematological system (vascular hemostasis, blood coagulation), (iii) pulmonary system (respiratory failure, pulmonary thromboembolism, pulmonary embolism, pneumonia, pulmonary vascular damage, pulmonary fibrosis), (iv) cardiovascular system (myocardial hypertrophy, coronary artery atherosclerosis, focal myocardial fibrosis, acute myocardial infarction, cardiac hypertrophy), (v) gastrointestinal, hepatic, and renal systems (diarrhea, nausea/vomiting, abdominal pain, anorexia, acid reflux, gastrointestinal hemorrhage, lack of appetite/constipation), (vi) skeletomuscular system (immune-mediated skin diseases, psoriasis, lupus), (vii) nervous system (loss of taste/smell/hearing, headaches, spasms, convulsions, confusion, visual impairment, nerve pain, dizziness, impaired consciousness, nausea/vomiting, hemiplegia, ataxia, stroke, cerebral hemorrhage), (viii) mental health (stress, depression and anxiety). We additionally hypothesized mechanisms of action by investigating possible molecular mechanisms associated with these disease outcomes/symptoms. Overall, the COVID-19 pathology is still characterized by cytokine storm that results to endothelial inflammation, microvascular thrombosis, and multiple organ failures.
Assuntos
COVID-19/complicações , COVID-19/fisiopatologia , Síndrome de Resposta Inflamatória Sistêmica/complicações , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , Sistema Cardiovascular , Diarreia , Síndrome de Guillain-Barré , Hemostasia , Humanos , Sistema Imunitário , Inflamação , Saúde Mental , Sistema Nervoso , Pandemias , SARS-CoV-2 , Síndrome Respiratória Aguda Grave , TromboseRESUMO
Heat-labile toxin I (LT-I), produced by strains of enterotoxigenic Escherichia coli (ETEC), causes profuse watery diarrhea in humans. Different in vitro and in vivo models have already elucidated the mechanism of action of this toxin; however, their use does not always allow for more specific studies on how the LT-I toxin acts in systemic tracts and intestinal cell lines. In the present work, zebrafish (Danio rerio) and human intestinal cells (Caco-2) were used as models to study the toxin LT-I. Caco-2 cells were used, in the 62nd passage, at different cell concentrations. LT-I was conjugated to FITC to visualize its transport in cells, as well as microinjected into the caudal vein of zebrafish larvae, in order to investigate its effects on survival, systemic traffic, and morphological formation. The internalization of LT-I was visualized in 3 × 104 Caco-2 cells, being associated with the cell membrane and nucleus. The systemic traffic of LT-I in zebrafish larvae showed its presence in the cardiac cavity, yolk, and regions of the intestine, as demonstrated by cardiac edema (100%), the absence of a swimming bladder (100%), and yolk edema (80%), in addition to growth limitation in the larvae, compared to the control group. There was a reduction in heart rate during the assessment of larval survival kinetics, demonstrating the cardiotoxic effect of LT-I. Thus, in this study, we provide essential new depictions of the features of LT-I.
RESUMO
Objetivos: Avaliar a citotoxicidade do peróxido de carbamida, em diferentes concentrações, para uma linhagem de células de hamster (estudo in vitro), bem como seus efeitos sistêmicos em um ensaio in vivo. Métodos: Utilizou-se teste de citotoxicidade pela análise de viabilidade celular, bem como a análise histoquímica do rim e do fígado, comparando o grupo controle e grupos testes, caracterizados pela ingestão de peróxido de carbamida na água de abastecimento em diferentes concentrações: 1,9mg/ml (teste1), 0,95mg/ml (teste 2), 0,71mg/ml (teste 3), 0,47mg/ml (teste 4) e 0,24mg/ml (teste 5) num período de 40 dias. Resultados: O agente clareador se mostrou altamente citotóxico nas concentrações de IC50 = 0,4mM. Além disso, foi observada alteração significativa no hemograma em relação à contagem de eritrócitos, no volume corpuscular médio, concentração de hemoglobina, contagem dos neutrófilos segmentados e número de linfócitos. Em relação às enzimas, na contagem de ureia, foram observadas alterações estatisticamente significativas entre o grupo controle e os grupos testes 1 e 2 (p=0.0000). Para a contagem de fosfatase alcalina, no vigésimo dia, foram encontrados resultados com diferença estatística entre o grupo controle e os grupos testes 2, 3, 4, e 5 (p=0.0009). Além disso, mudanças morfológicas no fígado e rim também foram observadas. Conclusão: O peróxido de carbamida, nas diferentes concentrações estudadas, determinou alterações sistêmicas significativas, demonstrando a importância de cautela no uso deste medicamento na Odontologia, a fim de evitar danos irreversíveis para a saúde do paciente.
Objectives: To evaluate the cellular cytotoxicity effects of carbamide peroxide at different concentrations in a hamster cell line in an in vitro study and its systemic effects in an in vivo assay. Methods: Cell cytotoxicity assay by cellular viability analysis and histochemical evaluation of kidney and liver morphology were performed comparing the control group and test groups, which were characterized by the ingestion of carbamide peroxide in the water supply at different concentrations: 1.9mg/ml 1), 0.95mg/ml (test 2), 0.71mg/ml (test 3), 0.47mg/ml (test 4) and 0.24mg/ml (test 5) for a period of 40 days. Results: The bleaching agent was cytotoxic at concentrations of IC50 = 0.4mM. In addition, a significant alteration of the blood count was observed in erythrocyte count, mean corpuscular volume, hemoglobin concentration, segmented neutrophil count and lymphocyte count. Regarding the enzymes, urea counts showed statistically significant changes between the control group and test groups 1 and 2 (Tukey index = 5.34, p = 0.0000) and alkaline phosphatase counts between the control group and the test groups 2, 3, 4, and 5 (Tukey's index = 10.72, p = 0.0009). Changes in liver and kidney morphology were also observed. Conclusion: Carbamide peroxide in the different concentrations studied can provide significant systemic alterations, demonstrating the importance of using this drug with caution in dentistry, in order to avoid irreversible damage to the patient.
RESUMO
OBJECTIVES: Tissue adhesives can be used to prevent pulmonary air leaks, which frequently occur after lung interventions. The objective of this study is to evaluate local and systemic effects of fibrin and cyanoacrylate tissue adhesives on lung lesions in rabbits. METHODS: Eighteen rabbits were submitted to videothoracoscopy + lung incision alone (control) or videothoracoscopy + lung incision + local application of fibrin or cyanoacrylate adhesive. Blood samples were collected and assessed for leukocyte, neutrophil and lymphocyte counts and interleukin-8 levels preoperatively and at 48 hours and 28 days post-operatively. After 28 days, the animals were euthanized for gross examination of the lung surface, and lung fragments were excised for histopathological analysis. RESULTS: Fibrin and cyanoacrylate produced similar adhesion scores of the lung to the parietal pleura. Microscopic analysis revealed uniform low-cellular tissue infiltration in the fibrin group and an intense tissue reaction characterized by dense inflammatory infiltration of granulocytes, giant cells and necrosis in the cyanoacrylate group. No changes were detected in the leukocyte, neutrophil or lymphocyte count at any time-point, while the interleukin-8 levels were increased in the fibrin and cyanoacrylate groups after 48 hours compared with the pre-operative control levels (p<0.01). CONCLUSION: Both adhesive agents promoted normal tissue healing, with a more pronounced local inflammatory reaction observed for cyanoacrylate. Among the serum markers of inflammation, only the interleukin-8 levels changed post-operatively, increasing after 48 hours and decreasing after 28 days to levels similar to those of the control group in both the fibrin and cyanoacrylate groups.