Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Front Chem ; 11: 1106778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035113

RESUMO

Ternary I-III-VI quantum dots (TQDs) are semiconductor nanomaterials that have been gradually incorporated in the fabrication of light-emitting diodes (LEDs) over the last 10 years due to their physicochemical and photoluminescence properties, such as adequate quantum yield values, tunable wavelength emission, and easy synthesis strategies, but mainly because of their low toxicity that allows them to be excellent candidates to compete with conventional Cd-Pb-based QDs. This review addresses the different strategies to obtain TQDs and how synthesis conditions influence their physicochemical properties, followed by the LEDs parameters achieved using TQDs. The second part of the review summarizes how TQDs are integrated into LEDs and white light-emitting diodes (WLEDs). Furthermore, an insight into the state-of-the-art LEDs development using TQDs, including its advantages and disadvantages and the challenges to overcome, is presented at the end of the review.

3.
Environ Res ; 216(Pt 1): 114424, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162474

RESUMO

This contribution aims to demonstrate the scope of new hybrids between biomass and metal-organic frameworks (MOF@biomass) used in the adsorption process of pollutants. After a brief presentation of the use of the main series of MOFs as efficient adsorbents for different types of pollutants, the limitations of these structures related to particle size and hydrodynamic problems during their application are highlighted. Lignocellulosic biomasses are also recognized as an alternative adsorbent, mainly due to their high natural abundance and their low environmental impact during and after their application. The limited capacity of bioadsorbents becomes important in this research. Consequently, the largest amount of information existing in the last ten years on MOF-Biomass functionalization as a hybrid and improvement technology for adsorption processes is compiled, analyzed, compared and contrasted. So far, there is no evidence of works that exploit the concept of functionalization of adsorbents of different nature to give rise to new hybrid materials. Through this review it was found that the hybrids obtained show a higher adsorption capacity (Qe) compared to their precursors, due to the increase of organic functional groups provided by the biomass. Thus, for heavy metals, dyes, Arsenium anions and other organic and pharmaceutical compounds, there are increases in Qe of about 100 mg g-1. The possibility of the new hybrid being studied for desorption and reuse processes is also raised, resulting in a new line of research that is attractive for the industry from an economic and environmental point of view. The functionalization methods and techniques used in the studies cited in this article are outlined. In conclusion, this research brings a new horizon of study in the field of adsorption and mentions the main future challenges related to new sustainable applications.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Metais Pesados , Poluentes Químicos da Água , Adsorção , Biomassa , Poluentes Químicos da Água/análise
4.
Environ Sci Pollut Res Int ; 27(32): 40405-40420, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32666447

RESUMO

Catalysts of Pd-In supported on activated carbon fiber were synthesized, characterized, and evaluated for the removal of nitrogen oxyanions from water. The work was carried out aiming the development of a green synthesis process, and the studies were accomplished with the following objectives: (a) to evaluate whether catalysts produced by wet impregnation (WI) and autocatalytic deposition (AD) have enough catalytic activity for the removal of oxyanions in water; (b) to determine the efficiency of ion removal using formic acid as a reducing agent; (c) to determine which synthesis method produces less waste. It was found that the two synthesis processes modified the properties of the support and that the distribution of the particles of the metallic phase was of the nanometric order, being these particles found predominantly at the support surface. By using formic acid as a reducing agent, although low nitrate conversions were obtained (32%), a selectivity to N2 higher than 99% was achieved. These findings were attributed to the low decomposition of formic acid on the catalyst surface. The Pd:In (0.45:0.2) catalyst prepared by WI was the most suitable for the catalytic reduction of both nitrate and nitrite oxyanions. Regarding the green point of view of the synthesis method, catalysts prepared by WI generated less waste. Graphical abstract.


Assuntos
Carvão Vegetal , Purificação da Água , Fibra de Carbono , Catálise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA