Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; 1865(3): 149046, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642871

RESUMO

The respiratory chain alternative enzymes (AEs) NDX and AOX from the tunicate Ciona intestinalis (Ascidiacea) have been xenotopically expressed and characterized in human cells in culture and in the model organisms Drosophila melanogaster and mouse, with the purpose of developing bypass therapies to combat mitochondrial diseases in human patients with defective complexes I and III/IV, respectively. The fact that the genes coding for NDX and AOX have been lost from genomes of evolutionarily successful animal groups, such as vertebrates and insects, led us to investigate if the composition of the respiratory chain of Ciona and other tunicates differs significantly from that of humans and Drosophila, to accommodate the natural presence of AEs. We have failed to identify in tunicate genomes fifteen orthologous genes that code for subunits of the respiratory chain complexes; all of these putatively missing subunits are peripheral to complexes I, III and IV in mammals, and many are important for complex-complex interaction in supercomplexes (SCs), such as NDUFA11, UQCR11 and COX7A. Modeling of all respiratory chain subunit polypeptides of Ciona indicates significant structural divergence that is consistent with the lack of these fifteen clear orthologous subunits. We also provide evidence using Ciona AOX expressed in Drosophila that this AE cannot access the coenzyme Q pool reduced by complex I, but it is readily available to oxidize coenzyme Q molecules reduced by glycerophosphate oxidase, a mitochondrial inner membrane-bound dehydrogenase that is not involved in SCs. Altogether, our results suggest that Ciona AEs might have evolved in a mitochondrial inner membrane environment much different from that of mammals and insects, possibly without SCs; this correlates with the preferential functional interaction between these AEs and non-SC dehydrogenases in heterologous mammalian and insect systems. We discuss the implications of these findings for the applicability of Ciona AEs in human bypass therapies and for our understanding of the evolution of animal respiratory chain.


Assuntos
Ciona intestinalis , Proteínas Mitocondriais , Fosforilação Oxidativa , Animais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/enzimologia , Humanos , Oxirredutases/genética , Oxirredutases/metabolismo , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/enzimologia , Urocordados/genética , Urocordados/enzimologia , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Filogenia , Proteínas de Plantas
2.
Arch Gerontol Geriatr ; 102: 104717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35594738

RESUMO

Sarcopenia is a syndrome that leads to physical disability and that deteriorates elderly people´s life quality. The etiology of sarcopenia is multifactorial, but mitochondrial dysfunction plays a paramount role in this pathology. Our research group has shown that the combined treatment of metformin (MTF) and exercise has beneficial effects for preventing muscle loss and fat accumulation, by modulating the redox state. To get an insight into the mechanism of the combined treatment, the mitochondrial bioenergetics was studied in the mitochondria isolated from old female Wistar rats quadriceps muscles. The animals were divided into six groups; three performed exercise on a treadmill for 5 days/week for 20 months, and the other three were sedentary. Also, two groups of each were treated with MTF for 6 or 12 months. The rats were euthanized at 24 months. The mitochondria were isolated and supercomplexes formation along with oxygen consumption, ATP synthesis, and ROS generation were evaluated. Our results showed that the combined treatment for 12 months increased the complex I and IV activities associated with the supercomplexes, simultaneously, ATP synthesis increased while ROS production decreased, indicating a tightly coupled mitochondria. The role of exercise plus the MTF treatment against sarcopenia in old muscles is discussed.


Assuntos
Metformina , Sarcopenia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Idoso , Animais , Metabolismo Energético , Feminino , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/patologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia
3.
J Fungi (Basel) ; 7(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440829

RESUMO

Respiratory supercomplexes are found in mitochondria of eukaryotic cells and some bacteria. A hypothetical role of these supercomplexes is electron channeling, which in principle should increase the respiratory chain efficiency and ATP synthesis. In addition to the four classic respiratory complexes and the ATP synthase, U. maydis mitochondria contain three type II NADH dehydrogenases (NADH for reduced nicotinamide adenine dinucleotide) and the alternative oxidase. Changes in the composition of the respiratory supercomplexes due to energy requirements have been reported in certain organisms. In this study, we addressed the organization of the mitochondrial respiratory complexes in U. maydis under diverse energy conditions. Supercomplexes were obtained by solubilization of U. maydis mitochondria with digitonin and separated by blue native polyacrylamide gel electrophoresis (BN-PAGE). The molecular mass of supercomplexes and their probable stoichiometries were 1200 kDa (I1:IV1), 1400 kDa (I1:III2), 1600 kDa (I1:III2:IV1), and 1800 kDa (I1:III2:IV2). Concerning the ATP synthase, approximately half of the protein is present as a dimer and half as a monomer. The distribution of respiratory supercomplexes was the same in all growth conditions. We did not find evidence for the association of complex II and the alternative NADH dehydrogenases with other respiratory complexes.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33042002

RESUMO

Several studies suggest that the assembly of mitochondrial respiratory complexes into structures known as supercomplexes (SCs) may increase the efficiency of the electron transport chain, reducing the rate of production of reactive oxygen species. Therefore, the study of the (dis)assembly of SCs may be relevant for the understanding of mitochondrial dysfunction reported in brain aging and major neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Here we briefly reviewed the biogenesis and structural properties of SCs, the impact of mtDNA mutations and mitochondrial dynamics on SCs assembly, the role of lipids on stabilization of SCs and the methodological limitations for the study of SCs. More specifically, we summarized what is known about mitochondrial dysfunction and SCs organization and activity in aging, AD and PD. We focused on the critical variables to take into account when postmortem tissues are used to study the (dis)assembly of SCs. Since few works have been performed to study SCs in AD and PD, the impact of SCs dysfunction on the alteration of brain energetics in these diseases remains poorly understood. The convergence of future progress in the study of SCs structure at high resolution and the refinement of animal models of AD and PD, as well as the use of iPSC-based and somatic cell-derived neurons, will be critical in understanding the biological relevance of the structural remodeling of SCs.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Encéfalo/patologia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Espécies Reativas de Oxigênio/metabolismo
5.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165935, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827648

RESUMO

Deregulation of nutrient, hormonal, or neuronal signaling produces metabolic alterations that result in increased mitochondrial reactive oxygen species (ROS) production. The associations of the mitochondrial respiratory chain components into supercomplexes could have pathophysiological relevance in metabolic diseases, as supramolecular arrangements, by sustaining a high electron transport rate, might prevent ROS generation. In this review, the relationship between mitochondrial dysfunction and supercomplex arrangement of the mitochondrial respiratory chain components in obesity, insulin resistance, hepatic steatosis and diabetes mellitus is summarized and discussed.


Assuntos
Doenças Metabólicas/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos
6.
Free Radic Biol Med ; 153: 54-70, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32315768

RESUMO

The kidney proximal tubule function relies on oxidative phosphorylation (OXPHOS), thus mitochondrial dysfunction is characteristic of acute kidney injury (AKI). Maleic acid (MA) can induce an experimental model of Fanconi syndrome that is associated to oxidative stress and decreased oxygen consumption. Sulforaphane (SF) is an antioxidant known to protect against MA-induced AKI. The molecular basis by which SF maintains the bioenergetics in MA-induced AKI is not fully understood. To achieve it, rats were submitted to a protective scheme: SF (1 mg/kg/day i.p.) for four days and, at the fourth day, they received a single dose of MA (400 mg/kg i.p.), getting four main experimental groups: (1) control (CT), (2) MA-nephropathy (MA), (3) SF-protected and (4) SF-control (SF). Additionally, a similar protective schema was tested in cultured NRK-52E cells with different concentrations of SF and MA. In the animal model, SF prevented the MA-induced alterations: decrease in fatty acid-related oxygen consumption rate, OXPHOS capacity, mitochondrial membrane potential (Ψmt), and the activity of complex I (CI) as its monomeric and supercomplexes forms; the antioxidant also increased the activity of cytochrome c oxidase as well as mitochondrial biogenesis markers. Thus, SF prevented the MA-induced increase in fission, mitophagy and autophagy markers. In NRK-52E cells, we found that SF prevented the MA-induced cell death, increased mitochondrial mass and ameliorated the loss of Ψmt. We concluded that SF-induced biogenesis protects against mitochondrial dysfunction maintaining Ψmt, activities of mitochondrial complexes and supercomplexes, and prevents the extensive fission and mitophagy.


Assuntos
Síndrome de Fanconi , Mitofagia , Animais , Síndrome de Fanconi/induzido quimicamente , Síndrome de Fanconi/tratamento farmacológico , Síndrome de Fanconi/genética , Ácidos Graxos , Isotiocianatos , Biogênese de Organelas , Ratos , Sulfóxidos
7.
J Cell Physiol ; 234(10): 17405-17419, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30779122

RESUMO

HIG2A promotes cell survival under hypoxia and mediates the assembly of complex III and complex IV into respiratory chain supercomplexes. In the present study, we show that human HIGD2A and mouse Higd2a gene expressions are regulated by hypoxia, glucose, and the cell cycle-related transcription factor E2F1. The latter was found to bind the promoter region of HIGD2A. Differential expression of the HIGD2A gene was found in C57BL/6 mice in relation to tissue and age. Besides, the silencing of HIGD2A evidenced the modulation of mitochondrial dynamics proteins namely, OPA1 as a fusion protein increases, while FIS1, a fission protein, decreases. Besides, the mitochondrial membrane potential (ΔΨm) increased. The protein HIG2A is localized in the mitochondria and nucleus. Moreover, we observed that the HIG2A protein interacts with OPA1. Changes in oxygen concentration, glucose availability, and cell cycle regulate HIGD2A expression. Alterations in HIGD2A expression are associated with changes in mitochondrial physiology.


Assuntos
Ciclo Celular/fisiologia , Potencial da Membrana Mitocondrial/fisiologia , Dinâmica Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Animais , Complexo I de Transporte de Elétrons/genética , Humanos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo
8.
Mitochondrion ; 47: 266-272, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30664953

RESUMO

Mitochondrial dysfunction, a common factor in several diseases is accompanied with reactive oxygen species (ROS) production. These molecules react with proteins and lipids at their site of generation, establishing a vicious cycle which might result in further mitochondrial injury. It is well established that mitochondrial respiratory complexes can be organized into supramolecular structures called supercomplexes (SCs) or respirasomes; yet, the physiological/pathological relevance of these structures remains unresolved. Changes in their stabilization and content have been documented in Barth's syndrome, degenerative diseases such as Parkinson's and Alzheimer, cardiovascular diseases including heart failure and ischemia-reperfusion damage, as well as in aging. Under pathological conditions, SCs stability could have relevant biomedical implications or might be used as a reliable marker of mitochondrial damage. The purpose of this review is to recapitulate the current state of the significance on mitochondrial bioenergetics of these structures and their possible role in pathophysiologies related with ROS increase.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/enzimologia , Síndrome de Barth/enzimologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Membranas Mitocondriais/metabolismo , Doença de Parkinson/enzimologia , Envelhecimento/patologia , Doença de Alzheimer/patologia , Animais , Síndrome de Barth/patologia , Metabolismo Energético , Humanos , Membranas Mitocondriais/patologia , Doença de Parkinson/patologia , Espécies Reativas de Oxigênio/metabolismo
9.
Mitochondrion ; 44: 75-84, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29343425

RESUMO

The [Fe-S] late-acting subsystem comprised of Isa1p/Isa2p, Grx5p, and Iba57p proteins (Fe-S-IBG subsystem) is involved in [4Fe-4S]-cluster protein assembly. The effect of deleting IBA57 in Saccharomyces cerevisiae on mitochondrial respiratory complex integration and functionality associated with Rieske protein maturation was evaluated. The iba57Δ mutant showed decreased expression and maturation of the Rieske protein. The loss of Rieske protein caused by IBA57 deletion affected the structure of supercomplexes III2IV2 and III2IV1 and their integration into the mitochondria, causing dysfunction in the electron transport chain. These effects were correlated with decreased cytochrome functionality and content in the iba57Δ mutant. These findings suggest that Iba57p participates in maturation of the [2Fe-2S]-cluster into the Rieske protein and that Rieske protein plays important roles in the conformation and functionality of mitochondrial supercomplex III/IV in the electron transport chain.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citocromos/deficiência , Deleção de Genes , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Free Radic Biol Med ; 129: 407-417, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30316780

RESUMO

Electron leakage from dysfunctional respiratory chain and consequent superoxide formation leads to mitochondrial and cell injury during ischemia and reperfusion (IR). In this work we evaluate if the supramolecular assembly of the respiratory complexes into supercomplexes (SCs) is associated with preserved energy efficiency and diminished oxidative stress in post-ischemic hearts treated with the antioxidant N-acetylcysteine (NAC) and the cardioprotective maneuver of Postconditioning (PostC). Hemodynamic variables, infarct size, oxidative stress markers, oxygen consumption and the activity/stability of SCs were compared between groups. We found that mitochondrial oxygen consumption and the activity of respiratory complexes are preserved in mitochondria from reperfused hearts treated with both NAC and PostC. Both treatments contribute to recover the activity of individual complexes. NAC reduced oxidative stress and maintained SCs assemblies containing Complex I, Complex III, Complex IV and the adapter protein SCAFI more effectively than PostC. On the other hand, the activities of CI, CIII and CIV associated to SCs assemblies were preserved by this maneuver, suggesting that the activation of other cardioprotective mechanisms besides oxidative stress contention might participate in maintaining the activity of the mitochondrial respiratory complexes in such superstructures. We conclude that both the monomeric and the SCs assembly of the respiratory chain contribute to the in vivo functionality of the mitochondria. However, although the ROS-induced damage and the consequent increased production of ROS affect the assembly of SCs, other levels of regulation as those induced by PostC, might participate in maintaining the activity of the respiratory complexes in such superstructures.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Cardiotônicos/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica , Pós-Condicionamento Isquêmico/métodos , Mitocôndrias Cardíacas/enzimologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/enzimologia , Miocárdio/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar
12.
Antioxid Redox Signal ; 27(1): 57-69, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27604998

RESUMO

AIMS: Mitochondrial supercomplexes (SCs) are the large supramolecular assembly of individual electron transport chain (ETC) complexes that apparently provide highly efficient ATP synthesis and reduce electron leakage and reactive oxygen species (ROS) production. Oxidative stress during cardiac ischemia-reperfusion (IR) can result in degradation of SCs through oxidation of cardiolipin (CL). Also, IR induces calcium overload and enhances reactive oxygen species (mitROS) in mitochondria that result in the opening of the nonselective permeability transition pores (PTP). The opening of the PTP further compromises cellular energetics and increases mitROS ultimately leading to cell death. Here, we examined the role of PTP-induced mitROS in disintegration of SCs during cardiac IR. The relationship between mitochondrial PTP, ROS, and SCs was investigated using Langendorff-perfused rat hearts subjected to global ischemia (25 min) followed by short-time (5 min) or long-time (60 min) reperfusion in the presence or absence of the PTP inhibitor, sanglifehrin A (SfA), and the mitochondrial targeted ROS and electron scavenger, XJB-5-131. Also, the effects of CL deficiency on SC degradation, PTP, and mitROS were investigated in tafazzin knockdown (TazKD) mice. RESULTS: Cardiac IR induced PTP opening and mitROS generation, inhibited by SfA. Percent distributions of SCs were significantly affected by IR, and the effects were dependent on the reperfusion time and reversed by SfA and XJB-5-131. TazKD mice demonstrated a 40% lower SC I + III+IV with reduced basal mitochondrial PTP, ROS, and ETC complex activity. Innovation and Conclusion: Sustained reperfusion after cardiac ischemia induces disintegration of mitochondrial SCs, and PTP-induced ROS presumably play a causal role in SC disassembly. Antioxid. Redox Signal. 27, 57-69.


Assuntos
Transporte de Elétrons , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Óxidos N-Cíclicos/farmacologia , Modelos Animais de Doenças , Feminino , Lactonas/farmacologia , Masculino , Poro de Transição de Permeabilidade Mitocondrial , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Compostos de Espiro/farmacologia
13.
J Bioenerg Biomembr ; 48(4): 451-67, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27503613

RESUMO

The associations among respiratory complexes in energy-transducing membranes have been established. In fact, it is known that the Gram-negative bacteria Paracoccus denitrificans and Escherichia coli have respiratory supercomplexes in their membranes. These supercomplexes are important for channeling substrates between enzymes in a metabolic pathway, and the assembly of these supercomplexes depends on the protein subunits and membrane lipids, mainly cardiolipin, which is present in both the mitochondrial inner membrane and bacterial membranes. The Gram-positive bacterium Bacillus subtilis has a branched respiratory chain, in which some complexes generate proton motive force whereas others constitute an escape valve of excess reducing power. Some peculiarities of this respiratory chain are the following: a type II NADH dehydrogenase, a unique b 6 c complex that has a b 6 type cytochrome with a covalently bound heme, and a c-type heme attached to the third subunit, which is similar to subunit IV of the photosynthetic b 6 f complex. Cytochrome c oxygen reductase (caa 3 ) contains a c-type cytochrome on subunit I. We previously showed that the b 6 c and the caa 3 complexes form a supercomplex. Both the b 6 c and the caa 3 together with the quinol oxygen reductase aa 3 generate the proton motive force in B. subtilis. In order to seek proof that this supercomplex is important for bacterial growth in aerobic conditions we compared the b 6 c: caa 3 supercomplex from wild type membranes with membranes from two mutants lacking cardiolipin. Both mutant complexes were found to have similar activity and heme content as the wild type. Clear native electrophoresis showed that mutants lacking cardiolipin had b 6 c:caa 3 supercomplexes of lower mass or even individual complexes after membrane solubilization with digitonin. The use of dodecyl maltoside revealed a more evident difference between wild-type and mutant supercomplexes. Here we provide evidence showing that cardiolipin plays a role in the stability of the b 6 c:caa 3 supercomplex in B. subtilis.


Assuntos
Bacillus subtilis/metabolismo , Cardiolipinas/fisiologia , Transporte de Elétrons/fisiologia , Bacillus subtilis/enzimologia , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/metabolismo , Biomassa , Membrana Celular , Complexos Multienzimáticos/metabolismo , Proteínas Mutantes , Subunidades Proteicas , Força Próton-Motriz
14.
Biochim Biophys Acta ; 1837(1): 73-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23933018

RESUMO

The branched respiratory chain in mitochondria from the halotolerant yeast Debaryomyces hansenii contains the classical complexes I, II, III and IV plus a cyanide-insensitive, AMP-activated, alternative-oxidase (AOX). Two additional alternative oxidoreductases were found in this organism: an alternative NADH dehydrogenase (NDH2e) and a mitochondrial isoform of glycerol-phosphate dehydrogenase (MitGPDH). These monomeric enzymes lack proton pump activity. They are located on the outer face of the inner mitochondrial membrane. NDH2e oxidizes exogenous NADH in a rotenone-insensitive, flavone-sensitive, process. AOX seems to be constitutive; nonetheless, most electrons are transferred to the cytochromic pathway. Respiratory supercomplexes containing complexes I, III and IV in different stoichiometries were detected. Dimeric complex V was also detected. In-gel activity of NADH dehydrogenase, mass spectrometry, and cytochrome c oxidase and ATPase activities led to determine the composition of the putative supercomplexes. Molecular weights were estimated by comparison with those from the yeast Y. lipolytica and they were IV2, I-IV, III2-IV4, V2, I-III2, I-III2-IV, I-III2-IV2, I-III2-IV3 and I-III2-IV4. Binding of the alternative enzymes to supercomplexes was not detected. This is the first report on the structure and organization of the mitochondrial respiratory chain from D. hansenii.


Assuntos
Complexo I de Transporte de Elétrons/química , Transporte de Elétrons , Glicerolfosfato Desidrogenase/química , NADH Desidrogenase/química , Oxirredutases/química , Sequência de Aminoácidos , Respiração Celular/fisiologia , Debaryomyces/enzimologia , Complexo I de Transporte de Elétrons/metabolismo , Glicerolfosfato Desidrogenase/fisiologia , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , NADH Desidrogenase/fisiologia , Oxirredução , Oxirredutases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA