Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Algorithms Mol Biol ; 14: 21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31709002

RESUMO

BACKGROUND: The evolutionary distance between two genomes can be estimated by computing a minimum length sequence of operations, called genome rearrangements, that transform one genome into another. Usually, a genome is modeled as an ordered sequence of genes, and most of the studies in the genome rearrangement literature consist in shaping biological scenarios into mathematical models. For instance, allowing different genome rearrangements operations at the same time, adding constraints to these rearrangements (e.g., each rearrangement can affect at most a given number of genes), considering that a rearrangement implies a cost depending on its length rather than a unit cost, etc. Most of the works, however, have overlooked some important features inside genomes, such as the presence of sequences of nucleotides between genes, called intergenic regions. RESULTS AND CONCLUSIONS: In this work, we investigate the problem of computing the distance between two genomes, taking into account both gene order and intergenic sizes. The genome rearrangement operations we consider here are constrained types of reversals and transpositions, called super short reversals (SSRs) and super short transpositions (SSTs), which affect up to two (consecutive) genes. We denote by super short operations (SSOs) any SSR or SST. We show 3-approximation algorithms when the orientation of the genes is not considered when we allow SSRs, SSTs, or SSOs, and 5-approximation algorithms when considering the orientation for either SSRs or SSOs. We also show that these algorithms improve their approximation factors when the input permutation has a higher number of inversions, where the approximation factor decreases from 3 to either 2 or 1.5, and from 5 to either 3 or 2.

2.
Algorithms Mol Biol ; 13: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065782

RESUMO

BACKGROUND: One way to estimate the evolutionary distance between two given genomes is to determine the minimum number of large-scale mutations, or genome rearrangements, that are necessary to transform one into the other. In this context, genomes can be represented as ordered sequences of genes, each gene being represented by a signed integer. If no gene is repeated, genomes are thus modeled as signed permutations of the form π=(π1π2…πn) , and in that case we can consider without loss of generality that one of them is the identity permutation ιn=(12…n) , and that we just need to sort the other (i.e., transform it into ιn ). The most studied genome rearrangement events are reversals, where a segment of the genome is reversed and reincorporated at the same location; and transpositions, where two consecutive segments are exchanged. Many variants, e.g., combining different types of (possibly constrained) rearrangements, have been proposed in the literature. One of them considers that the number of genes involved, in a reversal or a transposition, is never greater than two, which is known as the problem of sorting by super short operations (or SSOs). RESULTS AND CONCLUSIONS: All problems considering SSOs in permutations have been shown to be in P , except for one, namely sorting signed circular permutations by super short reversals and super short transpositions. Here we fill this gap by introducing a new graph structure called cyclic permutation graph and providing a series of intermediate results, which allows us to design a polynomial algorithm for sorting signed circular permutations by super short reversals and super short transpositions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA