Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 424, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037584

RESUMO

Leptospirosis, a neglected zoonotic disease, is caused by pathogenic spirochetes belonging to the genus Leptospira and has one of the highest morbidity and mortality rates worldwide. Vaccination stands out as one of the most effective preventive measures for susceptible populations. Within the outer membrane of Leptospira spp., we find the LIC12287, LIC11711, and LIC13259 lipoproteins. These are of interest due to their surface location and potential immunogenicity. Thorough examination revealed the conservation of these proteins among pathogenic Leptospira spp.; we mapped the distribution of T- and B-cell epitopes along their sequences and assessed the 3D structures of each protein. This information aided in selecting immunodominant regions for the development of a chimeric protein. Through gene synthesis, we successfully constructed a chimeric protein, which was subsequently expressed, purified, and characterized. Hamsters were immunized with the chimeric lipoprotein, formulated with adjuvants aluminum hydroxide, EMULSIGEN®-D, Sigma Adjuvant System®, and Montanide™ ISA206VG. Another group was vaccinated with an inactivated Escherichia coli bacterin expressing the chimeric protein. Following vaccination, hamsters were challenged with a virulent L. interrogans strain. Our evaluation of the humoral immune response revealed the production of IgG antibodies, detectable 28 days after the second dose, in contrast to pre-immune samples and control groups. This demonstrates the potential of the chimeric protein to elicit a robust humoral immune response; however, no protection against challenge was achieved. While this study provides valuable insights into the subject, further research is warranted to identify protective antigens that could be utilized in the development of a leptospirosis vaccine. KEY POINTS: • Several T- and B-cell epitopes were identified in all the three proteins. • Four different adjuvants were used in vaccine formulations. • Immunization stimulated significant levels of IgG2/3 in vaccinated animals.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Leptospirose , Lipoproteínas , Animais , Leptospirose/prevenção & controle , Leptospirose/imunologia , Lipoproteínas/imunologia , Lipoproteínas/genética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Cricetinae , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/genética , Adjuvantes Imunológicos/administração & dosagem , Imunoglobulina G/sangue , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Leptospira interrogans/imunologia , Leptospira interrogans/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Vacinação , Imunidade Humoral , Leptospira/imunologia , Leptospira/genética , Imunogenicidade da Vacina
2.
Lancet Reg Health Am ; 34: 100750, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38699214

RESUMO

Background: Increased pediatric COVID-19 occurrence due to the SARS-CoV-2 Omicron variant has raised concerns about the effectiveness of existing vaccines. The protection provided by the SOBERANA-02-Plus vaccination scheme against this variant has not yet been studied. We aimed to evaluate the scheme's effectiveness against symptomatic Omicron infection and severe disease in children. Methods: In September 2021, Cuba implemented a mass pediatric immunization with the heterologous SOBERANA-02-Plus scheme: 2 doses of conjugated SOBERANA-02 followed by a heterologous SOBERANA-Plus dose. By December, before the Omicron outbreak, 95.4% of 2-18 years-old had been fully immunized. During the entire Omicron wave, we conducted a nationwide longitudinal post-vaccination case-population study to evaluate the real-world effectiveness of the SOBERANA-02-Plus scheme against symptomatic infection and severe disease in children without previous SARS-CoV-2 infection. The identification of COVID-19 cases relied on surveillance through first line services, which refer clinical suspects to pediatric hospitals where they are diagnosed based on a positive RT-PCR test. We defined the Incidence Rate ratio (IRR) as IRvaccinated age group/IRunvaccinated 1-year-old and calculated vaccine effectiveness as VE = (1-IRR)∗100%. 24 months of age being the 'eligible for vaccination' cut-off, we used a regression discontinuity approach to estimate effectiveness by contrasting incidence in all unvaccinated 1-year-old versus vaccinated 2-years-old. Estimates in the vaccinated 3-11 years-old are reported from a descriptive perspective. Findings: We included 1,098,817 fully vaccinated 2-11 years-old and 98,342 not vaccinated 1-year-old children. During the 24-week Omicron wave, there were 7003/26,241,176 person-weeks symptomatic COVID-19 infections in the vaccinated group (38.2 per 105 person-weeks in 2-years-old and 25.5 per 105 person-weeks in 3-11 years-old) against 3577/2,312,273 (154.7 per 105 person-weeks) in the unvaccinated group. The observed overall vaccine effectiveness against symptomatic infection was 75.3% (95% CI, 73.5-77.0%) in 2-years-old children, and 83.5% (95% CI, 82.8-84.2%) in 3-11 years-old. It was somewhat lower during Omicron BA.1 then during Omicron BA.2 variant circulation, which took place 1-3 and 4-6 months after the end of the vaccination campaign. The effectiveness against severe symptomatic disease was 100.0% (95% CI not estimated) and 94.6% (95% CI, 82.0-98.6%) in the respective age groups. No child death from COVID-19 was observed. Interpretation: Immunization of 2-11 years-old with the SOBERANA-02-Plus scheme provided strong protection against symptomatic and severe disease caused by the Omicron variant, which was sustained during the six months post-vaccination follow-up. Our results contrast with the observations in previous real-world vaccine effectiveness studies in children, which might be explained by the type of immunity a conjugated protein-based vaccine induces and the vaccination strategy used. Funding: National Fund for Science and Technology (FONCI-CITMA-Cuba).

3.
Vaccine ; 42(8): 1941-1952, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38368223

RESUMO

Given that individuals with latent tuberculosis (TB) infection represent the major reservoir of TB infection, latency-associated antigens may be promising options for development of improved multi-antigenic TB subunit vaccine. Thus, we selected RipA, a peptidoglycan hydrolase required for efficient cell division of Mycobacterium tuberculosis (Mtb), as vaccine candidate. We found that RipA elicited activation of dendritic cells (DCs) by induction of phenotypic maturation, increased production of inflammatory cytokines, and prompt stimulation of MAPK and NF-κB signaling pathways. In addition, RipA-treated DCs promoted Th1-polarzied immune responses of naïve CD4+ T cells with increased proliferation and activated T cells from Mtb-infected mice, which conferred enhanced control of mycobacterial growth inside macrophages. Moreover, mice immunized with RipA formulated in GLA-SE adjuvant displayed remarkable generation of Ag-specific polyfunctional CD4+ T cells in both lung and spleen. Following an either conventional or ultra-low dose aerosol challenges with 2 Mtb Beijing clinical strains, RipA/GLA-SE-immunization was not inferior to BCG by mediating protection as single Ag. Collectively, our findings highlighted that RipA could be a novel candidate as a component of multi-antigenic TB subunit vaccines.


Assuntos
Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Animais , Camundongos , N-Acetil-Muramil-L-Alanina Amidase , Pequim , Tuberculose/prevenção & controle , Surtos de Doenças , Antígenos de Bactérias , Vacina BCG
4.
Vaccines (Basel) ; 11(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38140221

RESUMO

Previously, we designed a subunit vaccine candidate based on three L. intracellularis antigens with promising results in pigs. In this study, antigens were produced individually to achieve an even antigen ratio in the formulation. The emulsion characterization included the drop size and the mechanical and thermal stability. Immune response was evaluated by indirect and sandwich ELISAs, qPCR, and flow cytometry. The vaccine candidate's safety was assessed by histopathology and monitoring the clinical behavior of animals. The average production yielded for the chimeric antigen as inclusion bodies was around 75 mg/L. The formulation showed mechanical and thermal stability, with a ratio Hu/Ho > 0.85 and a drop size under 0.15 nm. Antigens formulated at a ratio of 1:1:1 induced a significant immune response in inoculated pigs that persisted until the end of the experiment (week 14). The dose of 200 µg significantly activated cellular response measured by transcriptional and translational levels of cytokines. The cell proliferation assay revealed an increment of lymphocytes T CD4+ at the same dose. Animals gained weight constantly and showed proper clinical behavior during immunization assays. This research demonstrated the immunological robustness of the new subunit vaccine candidate against Porcine Proliferative Enteropathy evenly formulated with three chimeric antigens of L. intracellularis.

5.
Microb Pathog ; 184: 106378, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37802158

RESUMO

In the last 20 years, various research groups have endeavored to develop recombinant vaccines against leptospirosis to overcome the limitations of commercially available bacterins. Numerous antigens and vaccine formulations have been tested thus far. However, the analysis of cellular response in these vaccine formulations is not commonly conducted, primarily due to the scarcity of supplies and kits for the hamster animal model. Our research group has already tested the Q1 antigen, a chimeric protein combining the immunogenic regions of LipL32, LemA, and LigANI, in recombinant subunit and BCG-vectored vaccines. In both strategies, 100 % of the hamsters were protected against clinical signs of leptospirosis. However, only the recombinant BCG-vectored vaccine provided protection against renal colonization. Thus, the objective of this study is to characterize the cellular immune response in hamsters immunized with different vaccine formulations based on the Q1 antigen through transcriptional analysis of cytokines. The hamsters were allocated into groups and vaccinated as follows: recombinant subunit (rQ1), recombinant BCG (rBCG:Q1), and saline and BCG Pasteur control vaccines. To assess the cellular response induced by the vaccines, we cultured and stimulated splenocytes, followed by RNA extraction from the cells and analysis of cytokines using real-time PCR. The results revealed that the recombinant subunit vaccine elicited a Th2-type response, characterized by the expression of cytokines IL-10, IL-1α, and TNF-α. This pattern closely resembles the cytokines expressed in severe cases of leptospirosis. On the other hand, the rBCG-vectored vaccine induced a Th1-type response with significant up-regulation of IFN-γ. These findings suggest the involvement of the cellular response and the IFN-γ mediated inflammatory response in the sterilizing immunity mediated by rBCG. Therefore, this study may assist future investigations in characterizing the cellular response in hamsters, aiming to elucidate the mechanisms of efficacy and establish potential correlates of protection.


Assuntos
Vacina BCG , Leptospirose , Cricetinae , Animais , Antígenos de Bactérias/genética , Leptospirose/prevenção & controle , Proteínas Recombinantes/genética , Vacinas Sintéticas/genética , Citocinas/metabolismo , Imunidade Celular , Proteínas Recombinantes de Fusão/genética
6.
Mol Biotechnol ; 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344711

RESUMO

Chagas disease-caused by the parasite Trypanosoma cruzi-is a neglected tropical disease for which available drugs are not fully effective in the chronic stage and a vaccine is not available yet. Microalgae represent a promising platform for the production and oral delivery of low-cost vaccines. Herein, we report a vaccine prototype against T. cruzi produced in a microalgae platform, based on the candidate antigen Tc24 with a C terminus fusion with the Co1 peptide (Tc24:Co1 vaccine prototype). After modeling the tertiary structure, in silico studies suggested that the chimeric protein is antigenic, not allergenic, and molecular docking indicated binding with Toll-like receptors 2 and 4. Thus, Tc24:Co1 was expressed in the marine microalga Schizochytrium sp., and Western blot confirmed the expression at 48 h after induction, with a yield of 632 µg/L of algal culture (300 µg/g of lyophilized algal cells) as measured by the enzyme-linked immunosorbent assay (ELISA). Upon oral administration of whole-cell Schizochytrium sp. expressing Tc24:Co1 (7.5 µg or 15 µg of Tc24:Co1 doses) in mice, specific serum IgG and intestinal mucosa IgA responses were detected in addition to an increase in serum Th1/Th2 cytokines. In conclusion, Schizochytrium sp.-expressing Tc24:Co1 is a promising oral vaccine prototype to be evaluated in an animal model of Trypanosoma cruzi infection.

7.
Vaccines (Basel) ; 11(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36992103

RESUMO

Caseous lymphadenitis is a chronic contagious disease that causes economic losses worldwide. Treatments are ineffective, thus demonstrating the importance of vaccination. In this study, rNanH and rPknG proteins from Corynebacterium pseudotuberculosis were associated with saponin or aluminum hydroxide adjuvants. Three experimental groups (10 animals each) were immunized with sterile 0.9% saline solution (G1), rNanH + rPknG + Saponin (G2), rNanH + rPknG + Al(OH)3 (G3). The mice received two vaccine doses 21 days apart. Animals were challenged 21 days after the last immunization and evaluated for 50 days, with endpoint criteria applied when needed. The total IgG production levels of the experimental groups increased significantly on day 42 when compared to the control (p < 0.05). When tested against rNanH, G2 had a better rate of anti-rNanH antibodies compared to G3. In the anti-rPknG ELISA, the levels of total IgG, IgG1, and IgG2a antibodies were higher in G2. The vaccines generated partial protection, with 40% of the animals surviving the challenge. The association of recombinant NanH and PknG proteins led to promising protection rates in mice, and although using different adjuvants did not interfere with the survival rate, it influenced the immune response generated by the vaccine formulations.

8.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769094

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that causes gastroenteritis and Hemolytic Uremic Syndrome. Cattle are the main animal reservoir, excreting the bacteria in their feces and contaminating the environment. In addition, meat can be contaminated by releasing the intestinal content during slaughtering. Here, we evaluated the safety and immunogenicity of a vaccine candidate against STEC that was formulated with two chimeric proteins (Chi1 and Chi2), which contain epitopes of the OmpT, Cah and Hes proteins. Thirty pregnant cows in their third trimester of gestation were included and distributed into six groups (n = 5 per group): four groups were administered intramuscularly with three doses of the formulation containing 40 µg or 100 µg of each protein plus the Quil-A or Montanide™ Gel adjuvants, while two control groups were administered with placebos. No local or systemic adverse effects were observed during the study, and hematological parameters and values of blood biochemical indicators were similar among all groups. Furthermore, all vaccine formulations triggered systemic anti-Chi1/Chi2 IgG antibody levels that were significantly higher than the control groups. However, specific IgA levels were generally low and without significant differences among groups. Notably, anti-Chi1/Chi2 IgG antibody levels in the serum of newborn calves fed with colostrum from their immunized dams were significantly higher compared to newborn calves fed with colostrum from control cows, suggesting a passive immunization through colostrum. These results demonstrate that this vaccine is safe and immunogenic when applied to pregnant cows during the third trimester of gestation.


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Vacinas de Subunidades Antigênicas , Animais , Bovinos , Feminino , Gravidez , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Imunização Passiva , Imunoglobulina G , Vacinas de Subunidades Antigênicas/efeitos adversos
9.
Lancet Reg Health Am ; 18: 100423, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36618081

RESUMO

Background: SOBERANA-02 is a COVID-19 conjugate vaccine (recombinant RBD conjugated to tetanus toxoid). Phases 1/2 clinical trials demonstrated high immunogenicity, promoting neutralising IgG and specific T-cell response. A third heterologous dose of SOBERANA-Plus (RBD-dimer) further increased neutralising antibodies. The aim of this study is to evaluate the safety and efficacy of two immunisation regimes: two doses of SOBERANA-02 and a heterologous three-dose combination with SOBERANA-Plus added to it. Methods: From March 8th to June 24th, 2021 we conducted in Havana, Cuba a multicentre randomised, double-blind, placebo-controlled, phase-3 trial evaluating a two doses SOBERANA-02 scheme and a heterologous scheme with one dose SOBERANA-Plus added to it (RPCEC00000354). Participants 19-80 years were randomly assigned to receiving 28 days apart either the two or three dose scheme or placebo. The main endpoint was vaccine efficacy in preventing the occurrence of RT-PCR confirmed symptomatic COVID-19 at least 14 days after the second or third dose in the per-protocol population. We also assessed efficacy against severe disease and, in all participants receiving at least one vaccine/placebo dose, safety for 28 days after each dose. Findings: We included 44,031 participants (52.0% female, 48.0% male; median age 50 years, range 19-80 years; 7.0% black, 24.0% mixed-race, 59.0% white) in a context of initial Beta VOC predominance, with this variant being partially replaced by Delta near the trial's end. Vaccine efficacy in the heterologous combination was 92.0% (95%CI 80.4-96.7) against symptomatic disease. There were no severe COVID-19 cases in the vaccine group against 6 in the placebo group. Two doses of SOBERANA-02 was 69.7% (95%CI 56.5-78.9) and 74.9% (95%CI 33.7-90.5) efficacious against symptomatic and severe COVID-19, respectively. The occurrence of serious and severe adverse events (AE) was very rare and equally distributed between placebo and vaccine groups. Solicited AEs were slightly more frequent in the vaccine group but predominantly local and mostly mild and transient. Interpretation: Our results indicate that the straightforward to manufacture SOBERANA vaccines are efficacious in a context of Beta and Delta VOC circulation, have a favourable safety profile, and may represent an attractive option for use in COVID-19 vaccination programmes. Funding: This study received funds from the National Fund for Science and Technology (FONCI-CITMA-Cuba, contract 2020-20) of the Ministry of Science, Technology and Environment of Cuba.

10.
Int J Infect Dis ; 126: 164-173, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36403819

RESUMO

OBJECTIVES: To evaluate a heterologous vaccination scheme in children 3-18 years old (y/o) combining two SARS-CoV-2r- receptor binding domain (RBD)protein vaccines. METHODS: A phase I/II open-label, adaptive, and multicenter trial evaluated the safety and immunogenicity of two doses of FINLAY-FR-2 (subsequently called SOBERANA 02) and the third heterologous dose of FINLAY-FR-1A (subsequently called SOBERANA Plus) in 350 children 3-18 y/o in Havana Cuba. Primary outcomes were safety (phase I) and safety/immunogenicity (phase II) measured by anti-RBD immunoglobulin (Ig)G enzyme-linked immunoassay (ELISA), molecular and live-virus neutralization titers, and specific T-cells response. A comparison with adult immunogenicity and predictions of efficacy were made based on immunological results. RESULTS: Local pain was the unique adverse event with frequency >10%, and none was serious neither severe. Two doses of FINLAY-FR-2 elicited a humoral immune response similar to natural infection; the third dose with FINLAY-FR-1A increased the response in all children, similar to that achieved in vaccinated young adults. The geometric mean (GMT) neutralizing titer was 173.8 (95% confidence interval [CI] 131.7; 229.5) vs Alpha, 142 (95% CI 101.3; 198.9) vs Delta, 24.8 (95% CI 16.8; 36.6) vs Beta and 99.2 (95% CI 67.8; 145.4) vs Omicron. CONCLUSION: The heterologous scheme was safe and immunogenic in children 3-18 y/o. TRIAL REGISTRY: https://rpcec.sld.cu/trials/RPCEC00000374.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto Jovem , Humanos , Criança , Pré-Escolar , Adolescente , Vacinas contra COVID-19/efeitos adversos , Toxoide Tetânico , SARS-CoV-2 , Vacinas Conjugadas , COVID-19/prevenção & controle , Proteínas de Transporte , Anticorpos Neutralizantes , Anticorpos Antivirais
11.
Vaccine ; 41(1): 109-118, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36404171

RESUMO

BACKGROUND: Data from previous studies of the MVC-COV1901 vaccine, a subunit vaccine against SARS-CoV-2 based on the stable prefusion spike protein (S-2P) adjuvanted with CpG 1018 adjuvant and aluminum hydroxide, suggest that the vaccine is generally safe and elicits a good immune response in healthy adults and adolescents. By comparing with AZD1222, this study adds to the findings from previous trials and further evaluates the breadth of protection offered by MVC-COV1901. METHODS: In this phase 3, parallel group, randomized, double-blind, active-controlled trial conducted in 2 sites in Paraguay, we assigned adults aged 18-91 years in a 1:1 ratio to receive intramuscular doses of MVC-COV1901 or AZD1222 administered as scheduled in the clinical trial. Serum samples were collected on the day of vaccination and 14 days after the second dose. Primary and secondary safety and immunogenicity endpoints were assessed. In addition, other outcomes investigated were cross-reactive immunity against the Omicron strain and the induction of IgG subclasses. RESULTS: A total of 1,030 participants underwent randomization. Safety data was derived from this set while primary immunogenicity data involved a per-protocol immunogenicity (PPI) subset including 225 participants. Among the participants, 58% are seropositive at baseline. When compared against AZD1222, MVC-COV1901 exhibited superiority in terms of neutralizing antibody titers and non-inferiority in terms of seroconversion rates. Reactogenicity was generally mild and no serious adverse event was attributable to MVC-COV1901. Both vaccines have a Th1-biased response predominated by the production of IgG1 and IgG3 subclasses. Omicron-neutralizing titers were 44.5 times lower compared to wildtype-neutralizing titers among seronegative individuals at baseline. This fold-reduction was 3.0 times among the seropositive. CONCLUSION: Safety and immunogenicity data of MVC-COV1901 from the study in Paraguay confirm previous results. The previous infection coupled with vaccination of this vaccine may offer protection against the Omicron strain though its durability is still unknown.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Adolescente , Humanos , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , Paraguai , Método Duplo-Cego , Imunoglobulina G , Adjuvantes Imunológicos , Vacinas de Subunidades Antigênicas , Imunogenicidade da Vacina , Anticorpos Antivirais , Anticorpos Neutralizantes
12.
N Biotechnol ; 72: 11-21, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35953030

RESUMO

Developing affordable and easily manufactured SARS-CoV-2 vaccines will be essential to achieve worldwide vaccine coverage and long-term control of the COVID-19 pandemic. Here the development is reported of a vaccine based on the SARS-CoV-2 receptor-binding domain (RBD), produced in the yeast Pichia pastoris. The RBD was modified by adding flexible N- and C-terminal amino acid extensions that modulate protein/protein interactions and facilitate protein purification. A fed-batch methanol fermentation with a yeast extract-based culture medium in a 50 L fermenter and an immobilized metal ion affinity chromatography-based downstream purification process yielded 30-40 mg/L of RBD. Correct folding of the purified protein was demonstrated by mass spectrometry, circular dichroism, and determinations of binding affinity to the angiotensin-converting enzyme 2 (ACE2) receptor. The RBD antigen also exhibited high reactivity with sera from convalescent individuals and Pfizer-BioNTech or Sputnik V vaccinees. Immunization of mice and non-human primates with 50 µg of the recombinant RBD adjuvanted with alum induced high levels of binding antibodies as assessed by ELISA with RBD produced in HEK293T cells, and which inhibited RBD binding to ACE2 and neutralized infection of VeroE6 cells by SARS-CoV-2. Additionally, the RBD protein stimulated IFNγ, IL-2, IL-6, IL-4 and TNFα secretion in splenocytes and lung CD3+-enriched cells of immunized mice. The data suggest that the RBD recombinant protein produced in yeast P. pastoris is suitable as a vaccine candidate against COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Células HEK293 , Pandemias/prevenção & controle , Glicoproteína da Espícula de Coronavírus , Camundongos , Primatas
13.
Vaccine ; 40(31): 4220-4230, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35691871

RESUMO

BACKGROUND: SOBERANA 02 is a COVID-19 vaccine based on SARS-CoV-2 recombinant RBD conjugated to tetanus toxoid (TT). SOBERANA Plus antigen is dimeric-RBD. Here we report safety and immunogenicity from phase I and IIa clinical trials using two-doses of SOBERANA 02 and three-doses (homologous) or heterologous (with SOBERANA Plus) protocols. METHOD: We performed an open-label, sequential and adaptive phase I to evaluate safety and explore the immunogenicity of SOBERANA 02 in two formulations (15 or 25 µg RBD-conjugated to 20 µg of TT) in 40 subjects, 19-59-years-old. Phase IIa was open-label including 100 volunteers 19-80-years, receiving two doses of SOBERANA 02-25 µg. In both trials, half of volunteers were selected to receive a third dose of the corresponding SOBERANA 02 and half received a heterologous dose of SOBERANA Plus. Primary outcome was safety. The secondary outcome was immunogenicity evaluated by anti-RBD IgG ELISA, molecular neutralization of RBD:hACE2 interaction, live-virus-neutralization and specific T-cells response. RESULTS: The most frequent adverse event (AE) was local pain, other AEs had frequencies ≤ 5%. No serious related-AEs were reported. Phase IIa confirmed the safety in 60 to 80-years-old subjects. In phase-I SOBERANA 02-25 µg elicited higher immune response than SOBERANA 02-15 µg and progressed to phase IIa. Phase IIa results confirmed the immunogenicity of SOBERANA 02-25 µg even in 60-80-years. Two doses of SOBERANA02-25 µg elicited an immune response similar to that of the Cuban Convalescent Serum Panel and it was higher after the homologous and heterologous third doses. The heterologous scheme showed a higher immunological response. Anti-RBD IgG neutralized the delta variant in molecular assay, with a 2.5-fold reduction compared to D614G neutralization. CONCLUSIONS: SOBERANA 02 was safe and immunogenic in persons aged 19-80 years, eliciting neutralizing antibodies and specific T-cell response. Highest immune responses were obtained in the heterologous three doses protocol. TRIAL REGISTRY: https://rpcec.sld.cu/trials/RPCEC00000340, https://rpcec.sld.cu/trials/RPCEC00000347.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , COVID-19/terapia , Vacinas contra COVID-19/efeitos adversos , Humanos , Imunização Passiva , Imunogenicidade da Vacina , Imunoglobulina G , Pessoa de Meia-Idade , SARS-CoV-2 , Adulto Jovem , Soroterapia para COVID-19
14.
Vaccines (Basel) ; 10(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35214766

RESUMO

The significant number of people with latent and active tuberculosis infection requires further efforts to develop new vaccines or improve the Bacillus Calmette-Guérin (BCG), which is the only approved vaccine against this disease. In this study, we developed a recombinant fusion protein (PEPf) containing high-density immunodominant epitope sequences from Rv0125, Rv2467, and Rv2672 Mycobacterium tuberculosis (Mtb) proteases that proved immunogenic and used it to develop a recombinant BCG vaccine expressing the fusion protein. After challenging using Mtb, a specific immune response was recalled, resulting in a reduced lung bacterial load with similar protective capabilities to BCG. Thus BCG PEPf failed to increase the protection conferred by BCG. The PEPf was combined with Advax4 adjuvant and tested as a subunit vaccine using a prime-boost strategy. PEPf + Advax4 significantly improved protection after Mtb challenge, with a reduction in bacterial load in the lungs. Our results confirm that Mtb proteases can be used to develop vaccines against tuberculosis and that the use of the recombinant PEPf subunit protein following a prime-boost regimen is a promising strategy to improve BCG immunity.

15.
Poult Sci ; 100(9): 101329, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34333387

RESUMO

This study evaluated growth performance and cross-protection against Eimeria spp. using a subunit coccidia vaccine in 2 independent challenge experiments. In both trials, chickens were challenged with E. acervulina, E. maxima, and E. tenella oocysts. In Exp 1, 1000-day-old chickens were allocated in one of 2 treatments 1) Control group; 2) Biotech Vac Cox group. The vaccine was orally gavaged on d 2 and 16 of life and coccidia challenge was on d 21. Performance parameters were evaluated on d 21, 35, and 42. On d 34, coccidia lesions were scored. Oocysts per gram of feces (OPG) were evaluated on d 28, 35, and 42. In Exp 2, 900-day-old chickens were assigned in one of 2 treatments 1) Control group; 2) Biotech Vac Cox group. The vaccine was orally gavaged on d 2 and 16 of life and coccidia challenge was on d 21. Performance parameters were evaluated on d 21, 27, 35, and 42, and lesion scores and OPG at d 27. In Exp 1, chickens vaccinated had significantly lower feed intake (FI) at d 21 and feed conversion ratio (FCR) at d 35 compared to control chickens (P < 0.05). Vaccinated chickens showed a significant reduction (P ≤ 0.05) in OPG for E. maxima to nondetectable levels and for all coccidian species at d 42 compared to control chickens. In Exp 2, the chickens vaccinated showed a significant increase in BW, BW gain (BWG) and reduction in FCR on d 27, 35, and 42 (P ≤ 0.05). Vaccinated chickens had significantly lower (P ≤ 0.05) lesion scores for all 3 Eimeria species. Moreover, vaccinated chickens had a reduction in total OPG of 35.50% (P = 0.0739). Studies to evaluate the serological and mucosal immune response are currently being evaluated. This inactivated, orally delivered subunit vaccine offers significant cross-protection to Eimeria spp. and eliminates the needs to treat broilers with live oocysts, enhanced ease of use, and greater biosecurity to producers.


Assuntos
Coccidiose , Eimeria tenella , Eimeria , Doenças das Aves Domésticas , Ração Animal/análise , Animais , Biotecnologia , Galinhas , Coccidiose/prevenção & controle , Coccidiose/veterinária , Doenças das Aves Domésticas/prevenção & controle , Vacinas de Subunidades Antigênicas
16.
Braz J Infect Dis ; 25(4): 101606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34428473

RESUMO

Since the first described human infection with SARS-CoV-2 in December of 2019 many subunit protein vaccines have been proposed for use in humans. Subunit vaccines use one or more antigens suitable for eliciting a robust immune response. However, the major concern is the efficacy of subunit vaccines and elicited antibodies to neutralize the variants of SARS-CoV-2 like B.1.1.7 (Alpha), B.1.351 (Beta) and P1 (Gamma), B.1.617 (Delta) and C.37 (Lambda). The Spike protein (S) is a potential fragment for use as an antigen in vaccine development. This protein plays a crucial role in the first step of the infection process, as it binds to Angiotensin-Converting Enzyme 2 (ACE2) receptor and enters the host cell after binding. Immunization-induced specific antibodies against the receptor binding domain (RBD) may block and effectively prevent virus invasion. The focus of this review is the impact of spike mutated variants of SARS-CoV2 (Alpha, Beta, Gamma, Delta, and Lambda) on the efficacy of subunit recombinant vaccines. To date, a low or no significant impact on vaccine efficacy against Alpha and Delta variants has been reported. Such an impact on vaccine efficacy for Beta, Delta, Gamma, and Lambda variants may be even greater compared to the Alpha variant. Nonetheless, more comprehensive analyses are needed to assess the real impact on vaccine efficacy brought about by SARS-CoV-2 variants.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Humanos , RNA Viral , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Vacinas de Subunidades Antigênicas , Vacinas Sintéticas
17.
Front Vet Sci ; 8: 640228, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644156

RESUMO

The purpose of the present study was to evaluate the ability of a novel experimental subunit vaccine (ESV), induce colostrum IgA and serum IgG in sows, and to control enterotoxigenic Escherichia coli (ETEC) disease in neonatal and weanling piglets. The vaccine was tested in three experiments. Experiment 1 consisted of two independent trials. In each trial, 20 pregnant sows/groups were vaccinated intramuscularly (IM) with a commercial E. coli vaccine or intranasally with ESV at weeks 11 and 13 of pregnancy. Blood and serum samples were obtained within 12 h post-partum. In Experiment 1, intranasal vaccination with ESV significantly increased the sample-to-positive (S/P) ratio of secretory IgA in the colostrum of sows (P < 0.01, trial 1; P < 0.05, trial 2) compared to the IM vaccine. In Experiment 2, twenty-five 3-day old piglets were randomly allocated into two groups, control (n = 13) or ESV (n = 12) and were oral gavaged with the respective treatments on days 3 and 14 of life. On days 17-19, all piglets were challenged using a mixed ETEC culture via oral gavage. Within 72 h, all control group animals developed disease consistent with colibacillosis. Conversely, the ESV treated group remained disease free over the 7-day observation period and had significant increases in body weight gain compared to the control group piglets. In Experiment 3, thirty 28-day old piglets were randomly allocated, control (n = 15) or ESV (n = 15), and on days 33 and 43 of life, piglets were either given by oral gavage 2.0 mL saline (control group) or 2.0 mL ESV. At days 46 and 47 of life, all pigs were challenged with a mixed culture of ETEC and observed for clinical signs of disease. Results of Experiment 3 were similar to those observed in Experiment 2. This study indicates the ESV can induce better levels of colostrum secretory IgA in pregnant sows than IM vaccination, which may be protective to neonatal piglets. Further, the vaccine can protect piglets as early as 3 days of age from an ETEC infection. Importantly, the data suggest a single vaccine could be used across the farrowing, suckling, and weaning program to protect against pathogenic E. coli.

18.
Vaccines (Basel) ; 9(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671399

RESUMO

Live attenuated C-strain classical swine fever vaccines provide early onset protection. These vaccines confer effective protection against the disease at 5-7 days post-vaccination. It was previously reported that intramuscular administration of the Porvac® vaccine protects against highly virulent classical swine fever virus (CSFV) "Margarita" strain as early as seven days post-vaccination. In order to identify how rapidly protection against CSFV is conferred after a single dose of the Porvac® subunit vaccine E2-CD154, 15 swine, vaccinated with a single dose of Porvac®, were challenged intranasally at five, three, and one day post-vaccination with 2 × 103 LD50 of the highly pathogenic Cuban "Margarita" strain of the classical swine fever virus. Another five animals were the negative control of the experiment. The results provided clinical and virological data confirming protection at five days post-vaccination. Classical swine fever (CSF)-specific IFNγ T cell responses were detected in vaccinated animals but not detected in unvaccinated control animals. These results provided the first data that a subunit protein vaccine demonstrates clinical and viral protection at five days post-vaccination, as modified live vaccines.

19.
Curr Res Immunol ; 2: 23-31, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35492391

RESUMO

Chikungunya virus (CHIKV) is an arbovirus transmitted to humans mainly by the bite of infected Aedes aegypti and Aedes albopictus mosquitoes. CHIKV illness is characterized by fever and long-lasting arthritic symptoms, and in some cases it is a deadly disease. The CHIKV envelope E2 (E2CHIKV) glycoprotein is crucial for virus attachment to the cell. Furthermore, E2CHIKV is the immunodominant protein and the main target of neutralizing antibodies. To date, there is no available prophylactic vaccine or specific treatment against CHIKV infection. Here, we designed and produced a DNA vaccine and a recombinant protein containing a consensus sequence of E2CHIKV. C57BL/6 mice immunized twice with the E2CHIKV recombinant protein in the presence of the adjuvant Poly (I:C) induced the highest E2CHIKV-specific humoral and cellular immune responses, while the immunization with the homologous DNA vaccine pVAX-E2CHIKV was able to induce specific IFN-γ producing cells. The heterologous prime-boost strategy was also able to induce specific cellular and humoral immune responses that were, in general, lower than the responses induced by the homologous E2CHIKV recombinant protein immunization. Furthermore, recombinant E2CHIKV induced the highest titers of neutralizing antibodies. Collectively, we believe this is the first report to analyze E2CHIKV-specific humoral and cellular immune responses after immunization with E2CHIKV recombinant protein and DNA pVAX-E2CHIKV vaccine platforms.

20.
Transbound Emerg Dis ; 68(6): 3474-3481, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33300298

RESUMO

Bovine viral diarrhoea virus (BVDV) is a major cause of economic loss in the cattle industry, worldwide. Infection results in reduced productive performance, growth retardation, reduced milk production and increased susceptibility to other diseases leading to early culling of animals. There are two primary methods used to control the spread of BVDV: the elimination of persistently infected (PI) animals and vaccination. Currently, modified live or inactivated vaccines are used in BVDV vaccination programmes, but there are safety risks or insufficient protection, respectively, with these vaccines. Here, we report the development and efficacy of the first targeted subunit vaccine against BVDV. The core of the vaccine is the fusion of the BVDV structural protein, E2, to a single-chain antibody, APCH, together termed, APCH-E2. The APCH antibody targets the E2 antigen to the major histocompatibility type II molecule (MHC-II) present on antigen-presenting cells. Industrial production of the vaccine is carried out using the baculovirus expression vector system (BEVS) using single-use manufacturing technologies. This new subunit vaccine induces strong BVDV-specific neutralizing antibodies in guinea pigs and cattle. Importantly, in cattle with low levels of natural BVDV-specific neutralizing antibodies, the vaccine induced strong neutralizing antibody levels to above the protective threshold, as determined by a competition ELISA. The APCH-E2 vaccine induced a rapid and sustained neutralizing antibody response compared with a conventional vaccine in cattle.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Doenças dos Bovinos , Vírus da Diarreia Viral Bovina , Vacinas Virais , Animais , Anticorpos Antivirais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Bovinos , Cobaias , Vacinas de Subunidades Antigênicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA