Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microorganisms ; 10(3)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35336148

RESUMO

The discovery of penicillin entailed a decisive breakthrough in medicine. No other medical advance has ever had the same impact in the clinical practise. The fungus Penicillium chrysogenum (reclassified as P. rubens) has been used for industrial production of penicillin ever since the forties of the past century; industrial biotechnology developed hand in hand with it, and currently P. chrysogenum is a thoroughly studied model for secondary metabolite production and regulation. In addition to its role as penicillin producer, recent synthetic biology advances have put P. chrysogenum on the path to become a cell factory for the production of metabolites with biotechnological interest. In this review, we tell the history of P. chrysogenum, from the discovery of penicillin and the first isolation of strains with high production capacity to the most recent research advances with the fungus. We will describe how classical strain improvement programs achieved the goal of increasing production and how the development of different molecular tools allowed further improvements. The discovery of the penicillin gene cluster, the origin of the penicillin genes, the regulation of penicillin production, and a compilation of other P. chrysogenum secondary metabolites will also be covered and updated in this work.

2.
Appl Microbiol Biotechnol ; 104(21): 8979-8998, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32930839

RESUMO

Lovastatin, and its semisynthetic derivative simvastatine, has great medical and economic importance, besides great potential for other uses. In the last years, a deeper and more complex view of secondary metabolism regulation has emerged, with the incorporation of cluster-specific and global transcription factors, and their relation to signaling cascades, as well as the new level of epigenetic regulation. Recently, a new mechanism, which regulates lovastatin biosynthesis, at transcriptional level, has been discovered: reactive oxygen species (ROS) regulation; also new unexpected environmental stimuli have been identified, which induce the synthesis of lovastatin, like quorum sensing-type molecules and support stimuli. The present review describes this new panorama and uses this information, together with the knowledge on lovastatin biosynthesis and genomics, as the foundation to analyze literature on optimization of fermentation parameters and medium composition, and also to fully understand new strategies for strain genetic improvement. This new knowledge has been applied to the development of more effective culture media, with the addition of molecules like butyrolactone I, oxylipins, and spermidine, or with addition of ROS-generating molecules to increase internal ROS levels in the cell. It has also been applied to the development of new strategies to generate overproducing strains of Aspergillus terreus, including engineering of the cluster-specific transcription factor (lovE), global transcription factors like the ones implicated in ROS regulation (or even mitochondrial alternative respiration aox gen), or the global regulator LaeA. Moreover, there is potential to apply some of these findings to the development of novel unconventional production systems. KEY POINTS: • New findings in regulation of lovastatin biosynthesis, like ROS regulation. • Induction by unexpected stimuli: autoinducer molecules and support stimuli. • Recent reports on culture medium and process optimization from this stand point. • Applications to molecular genetic strain improvement methods and production systems.


Assuntos
Epigênese Genética , Lovastatina , Aspergillus/genética , Fermentação
3.
World J Microbiol Biotechnol ; 35(7): 103, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31236799

RESUMO

Dekkera bruxellensis is an industrial yeast mainly regarded as a contaminant species in fermentation processes. In winemaking, it is associated with off-flavours that cause wine spoilage, while in bioethanol production this yeast is linked to a reduction of industrial productivity by competing with Saccharomyces cerevisiae for the substrate. In spite of that, this point of view is gradually changing, mostly because D. bruxellensis is also able to produce important metabolites, such as ethanol, acetate, fusel alcohols, esters and others. This dual role is likely due to the fact that this yeast presents a set of metabolic traits that might be either industrially attractive or detrimental, depending on how they are faced and explored. Therefore, a proper industrial application for D. bruxellensis depends on the correct assembly of its central metabolic puzzle. In this sense, researchers have addressed issues regarding the physiological and genetic aspects of D. bruxellensis, which have brought to light much of our current knowledge on this yeast. In this review, we shall outline what is presently understood about the main metabolic features of D. bruxellensis and how they might be managed to improve its current or future industrial applications (except for winemaking, in which it is solely regarded as a contaminant). Moreover, we will discuss the advantages and challenges that must be overcome in order to take advantage of the full biotechnological potential of this yeast.


Assuntos
Dekkera/genética , Dekkera/metabolismo , Microbiologia Industrial , Ácido Acético/metabolismo , Etanol/metabolismo , Fermentação , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia
4.
Rev. colomb. biotecnol ; 21(1): 101-112, ene.-jun. 2019. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1013903

RESUMO

ABSTRACT Protoplasts are microbial or vegetable cells lacking a cell wall. These can be obtained from microalgae by an enzymatic hydrolysis process in the presence of an osmotic stabilizer. In general, protoplasts are experimentally useful in physiological, genetic and biochemical studies, so their acquisition and fusion will continue to be an active research area in modern biotechnology. The fusion of protoplasts in microalgae constitutes a tool for strain improvement because it allows both intra and interspecific genetic recombination, resulting in organisms with new or improved characteristics of industrial interest. In this review we briefly describe the methodology for obtaining protoplasts, as well as fusion methods and the main applications of microalgal platforms.


RESUMEN Los protoplastos son células microbianas o vegetales que carecen de pared celular. Estos pueden obtenerse a partir de microalgas por un proceso de hidrólisis enzimática en presencia de un estabilizador osmótico. En general, los protoplastos son experimentalmente útiles en estudios fisiológicos, genéticos y bioquímicos, por lo que su obtención y fusión continuarán siendo un área de investigación activa en la biotecnología moderna. La fusión de protoplastos en microalgas constituye una herramienta para el mejoramiento de cepas pues permite la recombinación genética intra e interespecífica, logrando así organismos con nuevas características de interés industrial. En esta revisión, describimos brevemente la metodología para obtener protoplastos, métodos de fusión y las principales aplicaciones de las plataformas basadas en microalgas.

5.
Bioprocess Biosyst Eng ; 41(5): 657-669, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29404683

RESUMO

In this work, we expanded and updated a genome-scale metabolic model of Streptomyces clavuligerus. The model includes 1021 genes and 1494 biochemical reactions; genome-reaction information was curated and new features related to clavam metabolism and to the biomass synthesis equation were incorporated. The model was validated using experimental data from the literature and simulations were performed to predict cellular growth and clavulanic acid biosynthesis. Flux balance analysis (FBA) showed that limiting concentrations of phosphate and an excess of ammonia accumulation are unfavorable for growth and clavulanic acid biosynthesis. The evaluation of different objective functions for FBA showed that maximization of ATP yields the best predictions for cellular behavior in continuous cultures, while the maximization of growth rate provides better predictions for batch cultures. Through gene essentiality analysis, 130 essential genes were found using a limited in silico media, while 100 essential genes were identified in amino acid-supplemented media. Finally, a strain design was carried out to identify candidate genes to be overexpressed or knocked out so as to maximize antibiotic biosynthesis. Interestingly, potential metabolic engineering targets, identified in this study, have not been tested experimentally.


Assuntos
Antibacterianos/biossíntese , Genoma Bacteriano , Streptomyces/genética , Streptomyces/metabolismo
6.
Methods Mol Biol ; 1671: 319-330, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29170968

RESUMO

Adaptive laboratory evolution is a powerful technique for strain development. However, the target phenotypes using this strategy have been limited by the required coupling of the phenotype-of-interest with fitness or survival, and thus adaptive evolution is generally not used to improve product formation. If the desired product confers a benefit to the host, then adaptive evolution can be an effective approach to improve host productivity. In this book chapter, we describe an effective adaptive laboratory evolution strategy for improving product formation of carotenoids, a class of compounds with antioxidant potential, in the yeast Saccharomyces cerevisiae.


Assuntos
Carotenoides/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Antioxidantes/metabolismo , Catalase/genética , Catalase/metabolismo , Estresse Oxidativo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA