RESUMO
Hexamerins, the proteins massively stored in the larval haemolymph of insects, are gradually used throughout metamorphosis as a source of raw material and energy for the development of adult tissues. Such behaviour defined hexamerins as storage proteins. Immunofluorescence experiments coupled with confocal microscopy show a hexamerin, HEX 70a, in the nucleus of the brain and fat body cells from honeybee workers, an unexpected localization for a storage protein. HEX 70a colocalizes with fibrillarin, a nucleolar-specific protein and H3 histone, thus suggesting a potential role as a chromatin-binding protein. This was investigated through chromatin immunoprecipitation and high-throughput DNA sequencing (ChIP-seq). The significant HEX 70a-DNA binding sites were mainly localized at the intergenic, promoter and intronic regions. HEX 70a targeted DNA stretches mapped to the genomic regions encompassing genes with relevant functional attributes. Several HEX 70a targeted genes were associated with H3K27ac or/and H3K27me3, known as active and repressive histone marks. Brain and fat body tissues shared a fraction of the HEX 70 targeted genes, and tissue-specific targets were also detected. The presence of overrepresented DNA motifs in the binding sites is consistent with specific HEX 70a-chromatin association. In addition, a search for HEX 70a targets in RNA-seq public libraries of fat bodies from nurses and foragers revealed differentially expressed targets displaying hex 70a-correlated developmental expression, thus supporting a regulatory activity for HEX 70a. Our results support the premise that HEX 70a is a moonlighting protein that binds chromatin and has roles in the brain and fat body cell nuclei, apart from its canonical role as a storage protein.
Assuntos
Cromatina , Corpo Adiposo , Animais , Abelhas/genética , Encéfalo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Corpo Adiposo/metabolismo , Larva/genética , Proteínas de Insetos/metabolismoRESUMO
A combination of abiotic stresses in sandy soils, such as saline water, saline soil, and lack of nutrients, affects productivity of faba bean. In this study, organic amendments and biostimulants (VIUSID® agro) were used in combination to increase yield of faba bean seed as well as the protein content under a sandy soil and irrigation affected by salt water. Two field experiments were carried out during two successive winter seasons of 2016/2017 and 2017/2018. A split-split-plot design in a randomized complete block was used. The main plots were allotted to the organic amendments, rates of biostimulants (VIUSID® agro) were assigned to sub-plot, and the cultivars were applied to sub-sub-plot. The results showed that the treatment of plant compost applied as an organic amendment and 1.5 L ha-1 of biostimulants (VIUSID® agro) with foliar application significantly increased seed yield of cultivars, Sakha-4, Sakha-1, and Giza-843 by 17.2, 33.0, and 19.8 % respectively, compared to control under a sandy soil and irrigation water affected by salts. The interaction between Sakha-1 cultivar, plant compost, and 1.5 L ha-1 of biostimulants (VIUSID® agro) achieved the optimal combination, providing the highest grain yield, as compared to all other treatments. The combination of these treatments is recommended in order to improve faba bean productivity under similar conditions.(AU)
Assuntos
Estresse Fisiológico/efeitos dos fármacos , Solos Arenosos , Sinergismo Farmacológico , Compostos Fitoquímicos/administração & dosagemRESUMO
BACKGROUND: The 11S globulin from amaranth is the most abundant storage protein in mature seeds and is well recognized for its nutritional value. We used this globulin to engineer a new protein by adding a four valinetyrosine antihypertensive peptide at its C-terminal end to improve its functionality. The new protein was named AMR5 and expressed in the Escherichia coli BL21-CodonPlus(DE3)-RIL strain using a custom medium (F8PW) designed for this work. RESULTS: The alternative medium allowed for the production of 652 mg/L expressed protein at the flask level, mostly in an insoluble form, and this protein was subjected to in vitro refolding. The spectrometric analysis suggests that the protein adopts a ß/α structure with a small increment of α-helix conformation relative to the native amaranth 11S globulin. Thermal and urea denaturation experiments determined apparent Tm and C1/2 values of 50.4°C and 3.04 M, respectively, thus indicating that the antihypertensive peptide insertion destabilized the modified protein relative to the native one. AMR5 hydrolyzed by trypsin and chymotrypsin showed 14- and 1.3-fold stronger inhibitory activity against angiotensin I-converting enzyme (IC50 of 0.034 mg/mL) than the unmodified protein and the previously reported amaranth acidic subunit modified with antihypertensive peptides, respectively. CONCLUSION: The inserted peptide decreases the structural stability of amaranth 11S globulin and improves its antihypertensive activity.
Assuntos
Peptídeos/metabolismo , Proteínas/metabolismo , Globulinas/metabolismo , Anti-Hipertensivos/metabolismo , Sementes , Temperatura , Meios de Cultura , Amaranthus , Estabilidade Proteica , Compostos FitoquímicosRESUMO
Mycobacterium abscessus complex has been characterized in the last decade as part of a cluster of mycobacteria that evolved from an opportunistic to true human pathogen; however, the factors responsible for pathogenicity are still undefined. It appears that the success of mycobacterial infection is intrinsically related with the capacity of the bacteria to regulate intracellular iron levels, mostly using iron storage proteins. This study evaluated two potential M. abscessus subsp. massiliense genes involved in iron storage. Unlike other opportunist or pathogenic mycobacteria studied, M. abscessus complex has two genes similar to ferritins from M. tuberculosis (Rv3841), and in M. abscessus subsp. massiliense, those genes are annotated as mycma_0076 and mycma_0077. Molecular dynamic analysis of the predicted expressed proteins showed that they have a ferroxidase center. The expressions of mycma_0076 and mycma_0077 genes were modulated by the iron levels in both in vitro cultures as well as infected macrophages. Structural studies using size-exclusion chromatography, circular dichroism spectroscopy and dynamic light scattering showed that r0076 protein has a structure similar to those observed in the ferritin family. The r0076 forms oligomers in solution most likely composed of 24 subunits. Functional studies with recombinant proteins, obtained from heterologous expression of mycma_0076 and mycma_0077 genes in Escherichia coli, showed that both proteins were capable of oxidizing Fe2+ into Fe3+, demonstrating that these proteins have a functional ferroxidase center. In conclusion, two ferritins proteins were shown, for the first time, to be involved in iron storage in M. abscessus subsp. massiliense and their expressions were modulated by the iron levels.