Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 6(9): e04957, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32995634

RESUMO

The presence of internal rotation in sigma bonds is essential for conformational analysis of organic molecules and its understanding is of great relevance in chemistry, as well as in several other areas. However, for aromatic compounds that have substituent groups, withdrawers or donors of electron, there are no data in the literature to explain their rotational barriers. In this context, the work studied the internal rotational barriers of electron donating and withdrawing groups in aromatic compounds using the MP3, MP4, and CCSD(T) methods and the influence of substituents' nature on barrier heights was investigated through calculations based on the theory of Natural Bond Orbitals (NBO) and Quantum Theory of Atoms in Molecules (QTAIM). The results obtained showed that the CCSD(T) method is the one that best describes the internal rotational barriers, followed by MP4 and MP3 and the electron donating groups decrease the barrier, whereas electron withdrawing groups increase. Through the NBO analysis it was possible to observe that for withdrawing groups the interaction of the molecular orbitals is more accentuated promoting the increase of the rotational barrier of these compounds. Through the QTAIM analysis it was possible to show that, for electron donating groups, the internal rotation is influenced by the loss of electronic density when the substituents is perpendicular to the ring plane, however, for withdrawing groups the density is little influenced, regardless of the two conformations (minimum and maximum energy). Two molecules showed free rotation, trichloromethylbenzene and methylbenzene, and the theoretical calculations NBO and QTAIM showed that for these species there is no difference in the properties studied when there is rotation of the dihedral angle.

2.
Acta Crystallogr C Struct Chem ; 71(Pt 4): 284-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25836286

RESUMO

The title molecular salt, C11H21N4(+)·C6H4NO3(-)·C6H5NO3, (II), crystallizes with two independent three-component aggregates in the asymmetric unit. In the cations, the cyclohexane rings fused to the cage azaadamantane systems both adopt a chair conformation. In the crystal structure, the aggregates are connected by C-H···O hydrogen bonds, forming a supramolecular unit enclosing an R4(4)(24) ring motif. These units are linked via C-H···O and C-H···N hydrogen bonds, forming a three-dimensional network. Even hydrogen-bond formation to one of the N atoms is enough to induce structural stereoelectronic effects in the normal donor→acceptor direction. The C-N bond distances provide structural evidence for a strong anomeric effect. The structure also displays O-H···O and N-H···O hydrogen bonding. Geometric optimization and natural bond orbital (NBO) analysis of (II) were undertaken by utilizing DFT/B3LYP with the 6-31+G(d,p) basis set. NBO second-order perturbation theory calculations indicate donor-acceptor interactions between nitrogen lone pairs and the antibonding orbital of the C-C and C-N bonds for the protonated polyamine, in agreement with the occurrence of bond-length and bond-angle changes within the aminal cage structure.

3.
Artigo em Inglês | MEDLINE | ID: mdl-24434201

RESUMO

Amino acid conformational analysis in solution are scarce, since these compounds present a bipolar zwitterionic structure ((+)H3NCHRCOO(-)) in these media. Also, intramolecular hydrogen bonds have been classified as the sole interactions governing amino acid conformational behavior in the literature. In the present work we propose phenylalanine and tyrosine methyl ester conformational studies in different solvents by (1)H NMR and infrared spectroscopies and theoretical calculations. Both experimental and theoretical results are in agreement and suggest that the conformational behavior of the phenylalanine and tyrosine methyl esters are similar and are dictated by the interplay between steric and hyperconjugative interactions.


Assuntos
Fenilalanina/química , Tirosina/análogos & derivados , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Conformação Molecular , Espectrofotometria Infravermelho , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA