Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arch Microbiol ; 205(9): 302, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550458

RESUMO

Recently, there has been growing interest in the characterization of native yeasts for their use in production of wines with regional characteristics. This study aimed to investigate Saccharomyces and non-Saccharomyces yeasts present in the spontaneous fermentation of Tannat and Marselan grape musts collected from Concordia (Entre Ríos, Argentina) over 2019, 2020, and 2021 vintages. The evolution of these fermentative processes was carried out by measuring total soluble solids, total acidity, volatile acidity, pH, ethanol concentration, and total carbon content. Isolated Saccharomyces and non-Saccharomyces yeasts were identified based on colony morphology in WL medium, 5.8S-ITS-RFLP analysis, and 26S rDNA D1/D2 gene sequencing. Two hundred and ten yeast colonies were isolated and identified as Pichia kudriavzevii, Saccharomyces cerevisiae, Hanseniaspora uvarum, Metschnikowia pulcherrima, Candida albicans, Candida parapsilosis, Pichia occidentalis, Pichia bruneiensis, Hanseniaspora opuntiae, Issatchenkia terricola, and Hanseniaspora vineae. P. kudriavzevii isolated from all vintages was associated with the spontaneous fermentation of grape musts from the Concordia region.


Assuntos
Vitis , Vinho , Fermentação , Leveduras , Vinho/análise , Saccharomyces cerevisiae/genética , DNA Ribossômico/genética
2.
Food Chem (Oxf) ; 6: 100157, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36588603

RESUMO

The objective of this study was to characterize the microbiota biodiversity of Uruçú-Amarela honey through metagenomics. Furthermore, the impact of maturation temperatures (20 and 30 °C) and time (0-180 days) on the physicochemical and antioxidant properties was investigated. 1H NMR was performed to verify metabolites formed during maturation. Uruçú-Amarela honey was mainly composed by lactic acid bacteria and osmophilic yeasts of genus Zygosaccharomyces. Maturation at 30 °C led to a higher fermentation activity, resulting in greater carbohydrate consumption, ethanol formation (0.0-0.6 %) and increased acidity (34.78-45.74 meq/kg) over the 180 days. It also resulted in honey with higher brown color (a* 0.7 to 3.89, b* 17.50-25.29) and antioxidant capacity, corroborating that the maturation is a suitable preservation technique for stingless bee honey, because it does not cause negative changes as it extends the shelf life of the stingless bee honey.

3.
Braz J Microbiol ; 53(2): 663-672, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35229280

RESUMO

High proteolytic activity and several biological functions (antimicrobial, antioxidant, antihypertensive, among others) have been attributed to lactic-acid bacteria (LAB) isolated from fish and peptides obtained from proteolysis. Therefore, the objective of this research was isolating, characterizing, and identifying LAB with proteolytic activity by spontaneous fermentation from common carp (Cyprinus carpio) reared in ponds and wild ones obtained from Lago de Chapala, Jalisco, Mexico. Spontaneous fermentation from complete carp specimens was observed, considering two sampling points (skin and intestines) at 15 °C at 5 and 10 days. Isolated LAB-from both reared and wild specimens-were identified and morphologically characterized; identification was performed by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Proteolytic activity was assessed by the presence of the proteolytic halo. A total of five genera and eight different LAB proteolytic species were isolated from all the carp samples. At 10 days, greater proteolytic LAB diversity was obtained from the intestine (Tukey's, p < 0.05); the proteolytic halo with the greatest diameter was recorded in wild carp skin with Lactiplantibacillus plantarum S5P2 (2.8 cm) at 5 days of fermentation, followed by Leuconostoc mesenteroides S5I1 (2.73 cm) and Leuconostoc pseudomesenteroides S5P2 (2.66 cm) (p < 0.05). In conclusion, proteolytic capability of LAB isolated from carp (Cyprimus carpio)-both wild and reared-is influenced by the ecosystem where they develop. These proteolytic LAB may be used in biotechnological industries to obtain bioactive peptides by fermenting substrates rich in proteins.


Assuntos
Carpas , Lactobacillales , Animais , Ecossistema , Fermentação , Peptídeos/metabolismo , Proteólise
4.
Biomolecules ; 10(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708695

RESUMO

In northern Mexico, the distilled spirit sotol with a denomination of origin is made from species of Dasylirion. The configuration of the volatile metabolites produced during the spontaneous fermentation of Dasylirion sp. must is insufficiently understood. In this study, the aim was to investigate the composition of the microbial consortia, describe the variation of volatile metabolites, and relate such profiles with their particular flavor attributes during the fermentation of sotol (Dasylirion sp.) must. Ascomycota was the phylum of most strains identified with 75% of total abundance. The genus of fermenting yeasts constituted of 101 Pichia strains and 13 Saccharomyces strains. A total of 57 volatile metabolites were identified and grouped into ten classes. The first stage of fermentation was composed of diesel, green, fruity, and cheesy attributes due to butyl 2-methylpropanoate, octan-1-ol, ethyl octanoate, and butanal, respectively, followed by a variation to pungent and sweet descriptors due to 3-methylbutan-1-ol and butyl 2-methylpropanoate. The final stage was described by floral, ethereal-winey, and vinegar attributes related to ethyl ethanimidate, 2-methylpropan-1-ol, and 2-hydroxyacetic acid. Our results improve the knowledge of the variations of volatile metabolites during the fermentation of sotol must and their contribution to its distinctive flavor.


Assuntos
Bebidas Alcoólicas , Asparagaceae/metabolismo , Fermentação , Aromatizantes/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Bebidas Alcoólicas/análise , Asparagaceae/química , Aromatizantes/análise , México , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Paladar , Compostos Orgânicos Voláteis/análise
5.
Food Microbiol ; 86: 103339, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703886

RESUMO

The study of microbial communities associated with spontaneous fermentation of agave juice for tequila production is required to develop starter cultures that improve both yield and quality of the final product. Quantification by HPLC of primary metabolites produced during the fermentations was determined. A polyphasic approach using plate count, isolation and identification of microorganisms, denaturing gradient gel electrophoresis and next generation sequencing was carried out to describe the diversity and dynamics of yeasts and bacteria during small-scale spontaneous fermentations of agave juice from two-year samplings. High heterogeneity in microbial populations and fermentation parameters were observed, with bacteria showing higher diversity than yeast. The core microorganisms identified were Saccharomyces cerevisiae and Lactobacillus fermentum. Practices in tequila production changed during the two-year period, which affected microbial community structure and the time to end fermentation. Bacterial growth and concomitant lactic acid production were associated with low ethanol production, thus bacteria could be defined as contaminants in tequila fermentation and efforts to control them should be implemented.


Assuntos
Bebidas Alcoólicas/microbiologia , Bactérias/metabolismo , Leveduras/isolamento & purificação , Agave/química , Agave/microbiologia , Bebidas Alcoólicas/análise , Bactérias/química , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Etanol/metabolismo , Fermentação , Cinética , Limosilactobacillus fermentum/química , Limosilactobacillus fermentum/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Leveduras/química , Leveduras/genética , Leveduras/metabolismo
6.
Front Microbiol ; 8: 532, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424672

RESUMO

Grape must harbors a complex community of yeast species responsible for spontaneous alcoholic fermentation. Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, less is known about the diversity and behavior of yeast communities present on fermenting grape must from other species of Vitis. In this work, we used a culture-dependent method to study the identity and dynamics of the indigenous yeast population present during the spontaneous fermentation of Isabella (Vitis labrusca L.) grape must. Alcoholic fermentation was conducted using standard enological practices, and the associated non-Saccharomyces and S. cerevisiae yeast community was analyzed using selective growth media and 5.8-ITS DNA sequencing. Candida californica, Candida hellenica, Starmerella bacillaris (synonym Candida zemplinina), Hanseniaspora uvarum, and Hanseniaspora vineae were the main non-Saccharomyces species identified on Isabella fermenting must. Issatchenkia hanoiensis, a yeast species rarely found on Vitis vinifera L. grapes, was also recognized on Isabella grape must. Candida azymoides, Candida californica and Pichia cecembensis, identified in this work on Isabella fermenting must, have not previously been found on Vitis vinifera L. grape must. Interestingly, C. azymoides, I. hanoiensis and P. cecembensis have recently been isolated from the surface of Vitis labrusca L. grapes from vineyards in the Azores archipelago, suggesting that specific Vitis-yeast species associations are formed independently of geographic origin. We suggest that C. azymoides, C. californica, and P. cecembensis are yeast species preferentially associated with Vitis labrusca L. grapes. Specific biological interactions between grapevines and yeast species may underlie the assembly of differential Vitis-microbial communities.

7.
Braz. j. pharm. sci ; 50(2): 321-327, Apr-Jun/2014. tab
Artigo em Inglês | LILACS | ID: lil-722186

RESUMO

Sourdough is a mixture of flour and water fermented by lactic acid bacteria and yeast, with a large use in bakery products. This study was developed with Brazilian grape (Niagara rosada) sourdough obtained from spontaneous fermentation. The aim of this work was to characterize genotypic and phenotypically lactic acid bacteria and yeasts isolated from sourdough. The phenotypic identification for bacteria and yeasts was performed by using the kit API50CHL and 20CAUX and the genotypic characterization was performed by sequencing method. A total of four isolated strains were analyzed in this study. Two of these strains were phenotypically and genotypic identified as Lactobacillus paracasei and one as Saccharomyces cerevisiae. Another sample phenotypically identified as Candida pelliculosa did not show the same identity by sequencing. It shows the need to use phenotypic and genotypic characterization associated for the correct microorganism identification.


Fermento natural é mistura de farinha e água fermentada por bactérias láticas e leveduras, amplamente utilizada em produtos de panificação. Neste estudo desenvolveu-se um fermento natural de uva brasileira (Niagara rosada), obtido a partir de fermentação espontânea. O objetivo deste trabalho foi caracterizar fenotipicamente e genotipicamente bactérias láticas e leveduras isoladas do fermento natural de uva. A identificação fenotípica para bactéria lática e leveduras foi realizada usando os kits API50CHL e 20CAUX e a caracterização genotípica foi realizada pelo método de sequenciamento. Neste estudo, isolaram-se quatro cepas. Duas cepas foram identificadas fenotipicamente e genotipicamente como Lactobacillus paracasei e outra cepa como Saccharomyces cerevisiae. A outra amostra de levedura, identificada fenotipicamente como Candida pelliculosa, não obteve a mesma identidade com a técnica de sequenciamento. Isso mostra a necessidade do uso da caracterização fenotípica e genotípica em associação para a correta identificação do micro-organismo.


Assuntos
Leveduras/classificação , Vitis/classificação , Fenótipo , Saccharomyces cerevisiae/metabolismo , Fermentação , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA