Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Exp Zool A Ecol Integr Physiol ; 339(1): 37-45, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35971806

RESUMO

Bioluminescence in fireflies is essential for sexual communication, and each species has evolved a specific bioluminescence emission capable of being detected by its visual system. This spectral "tuning" between visual sensitivity and bioluminescent emission has been established in 14 species of North American fireflies inhabiting diverse photoecological niches. Here we extend that research to three Brazilian species. Macrolampis omissa inhabits the Cerrado (savannas), while Photinus sp1 and Pyrogaster moestus are often sympatric species inhabiting borders of mesophyll rain forests and secondary growth. P. moestus particularly favors humid areas of the forest. M. omissa and Photinus sp1 are twilight-active fireflies emitting yellow bioluminescence. P. moestus is a "twi-night" species emitting green bioluminescence. It initiates flashing at the end of twilight and continues activity into the night. The visual spectral sensitivity of dark-adapted compound eyes in these three species is similar, showing a maximum in the yellow-green wavelengths and a secondary peak in the near-UV, suggesting the presence of two receptors. The bioluminescence emission spectrum in each species is tuned to its yellow-green visual sensitivity peak. Green chromatic adaptation experiments on Photinus sp1 and P. moestus suggest the presence of a blue receptor. The presence of near-UV, blue, and long-wavelength receptors in the compound eyes would enable a trichromatic color vision in Brazilian firefly species active in dim illumination.


Assuntos
Besouros , Vaga-Lumes , Animais , Masculino , Brasil , Besouros/fisiologia
2.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1431367

RESUMO

ABSTRACT Rhodnius prolixus is the most important vector of Trypanosoma cruzi in the northern part of South America. The compound eyes in adults of R. prolixus are involved in the nocturnal flight dispersion from sylvatic environments into human dwellings. During this behavior, the artificial lights play an important role in attracting R. prolixus; however, it is still not clear whether the compound eyes of this species use different visible wavelengths as a cue during active dispersion. We applied electrophysiological (electroretinography or ERG) and behavioral (take-off) experiments in a controlled laboratory setting to determine the spectral sensitivity of the compound eyes and the attraction of R. prolixus adults to discrete visible wavelengths. For the ERG experiments, flashes of 300 ms at wavelengths ranging between 350 and 700 nm at a constant intensity of 3.4 µW/cm2 were tested after adaptation to darkness and to blue and yellow lights. For the behavioral experiments, the adults were exposed to nine visible wavelengths at three different intensities, and their direction of take-off in an experimental arena was established with circular statistics. The ERG results showed peaks of spectral sensitivity at 470-490 nm and 520-550 nm in adults, while behavioral experiments showed attractions to blue, green and red lights, depending on the intensity of the light stimuli. The electrophysiological and behavioral results confirm that R. prolixus adults can detect certain wavelengths in the visible spectrum of light and be attracted to them during take-off.

3.
J Exp Biol ; 222(Pt 12)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31171601

RESUMO

The transmittance properties of the cornea, lens and humours of vertebrates determine how much light across the visible spectrum reaches the retina, influencing sensitivity to visual stimuli. Amphibians are the only vertebrate class in which the light transmittance of these ocular media has not been thoroughly characterised, preventing large-scale comparative studies and precise quantification of visual stimuli in physiological and behavioural experiments. We measured the ocular media transmittance in some commonly used species of amphibians (the bufonids Bufo bufo and Rhinella ornate, and the ranids Lithobates catesbeianus and Rana temporaria) and found low transmittance of short wavelength light, with ranids having less transmissive ocular media than bufonids. Our analyses also show that these transmittance properties have a considerable impact on spectral sensitivity, highlighting the need to incorporate this type of measurement into the design of stimuli for experiments on visual function.


Assuntos
Bufonidae/fisiologia , Ranidae/fisiologia , Visão Ocular , Percepção Visual , Animais , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA