Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 42(12): 2758-2767, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37638658

RESUMO

Currently, only Apis mellifera is used in environmental regulation to evaluate the hazard of pesticides to pollinators. The low representativeness of pollinators and bee diversity in this approach may result in insufficient protection for the wild species. This scenario is intensified in tropical environments, where little is known about the effects of pesticides on solitary bees. We aimed to calculate the medium lethal dose (LD50) and medium lethal concentration (LC50) of the insecticide dimethoate in the Neotropical solitary bee Centris analis, a cavity-nesting, oil-collecting bee distributed from Brazil to Mexico. Males and females of C. analis were exposed orally to dimethoate for 48 h under laboratory conditions. Lethality was assessed every 24 h until 144 h after the beginning of the test. After the LD50 calculation, we compared the value with available LD50 values in the literature of other bee species using the species sensitivity distribution curve. In 48 h of exposure, males showed an LD50 value 1.33 times lower than females (32.78 and 43.84 ng active ingredient/bee, respectively). Centris analis was more sensitive to dimethoate than the model species A. mellifera and the solitary bee from temperate zones, Osmia lignaria. However, on a body weight basis, C. analis and A. mellifera had similar LD50 values. Ours is the first study that calculated an LD50 for a Neotropical solitary bee. Besides, the results are of crucial importance for a better understanding of the effects of pesticides on the tropical bee fauna and will help to improve the risk assessment of pesticides to bees under tropical conditions, giving attention to wild species, which are commonly neglected. Environ Toxicol Chem 2023;42:2758-2767. © 2023 SETAC.


Assuntos
Himenópteros , Inseticidas , Praguicidas , Feminino , Abelhas , Animais , Inseticidas/toxicidade , Praguicidas/toxicidade , Dimetoato/toxicidade , Medição de Risco
2.
J Hazard Mater ; 403: 123918, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264970

RESUMO

Estuarine systems are vulnerable to metals stress, such as copper (Cu). Thus, the development of applicable tools to improve routine monitoring programs is increasingly necessary. In the present work a comprehensive Ecological Risk Assessment (ERA) was implemented by coupling the Measured Environmental Concentration (MEC), based on labile Cu (DGT) and the total dissolved Cu concentration. Additionally, toxicity data related to site-specific Predicted No Effect Concentration (PNEC) were used. As case study, estuarine areas were selected on Brazilian coast, previously reported as Cu release in shipyard areas. The results indicated an increase in concentrations of dissolved and labile Cu during the application of antifouling paints. In locations where more vessels in maintenance were found, the concentration of Cu-DGT exceeded the PNEC value (0.16 µg.L-1) and represented an important part of the total dissolved fraction (>93 %). The MEC/PNEC quotients, showed that shipyard areas represent a high ecological risk. Thus, it is highlighted the need for site-specific environmental assessments to manage complex ecosystems and set in environmental legislation. Consequently, the novel coupling of DGT technique and the derivation of a site-specific PNEC represent an easily applicable tool as an alternative to classical ERAs.

3.
Ecotoxicol Environ Saf ; 188: 109916, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31733936

RESUMO

Methylparaben (MeP) is one of the most used preservatives in the industry; however, the toxic effects on aquatic ecosystems are still poorly understood. Therefore, this study was conducted (1) to identify and compare the toxic effects of MeP on physiological parameters of different green microalgae species, using suitable mathematical models; and (2) to estimate a PNEC value for MeP in freshwater ecosystems, adopting either the deterministic or the probabilistic approaches. Toxicity tests were carried out with three green microalgae (Pseudopediastrum boryanum, Desmodesmus communis, Raphidocelis subcapitata), in which different endpoints such as growth rate, chlorophyll-a, and cell viability were measured and compared through the effective concentration which caused a response in x% of test organisms (ECx). ECx were obtained by adjusting different non-linear regression models for each microalgae dataset. Chlorophyll-a endpoint resulted in the lowest EC50 values, respectively 125, 81.2, 18.3 mg L-1 for D. communis, P. boryanum and R. subcapitata, showing R. subicapitata as the most sensitive, and D. communis as the most tolerant species to MeP (P < 0.05). PNEC was estimated from the present study and previous reports resulting in 5.7 and 65 µg L-1, respectively for the deterministic (PNECd) and the probabilistic (PNECp) approach. The development of chronic assays using test organisms from different ecological groups is encouraged to provide robust PNECp. In this meantime, we recommend the use of the estimated PNECd to support MeP risk assessments and policy formulation.


Assuntos
Clorófitas/efeitos dos fármacos , Água Doce/química , Microalgas/efeitos dos fármacos , Parabenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Ecossistema , Modelos Teóricos , Dinâmica não Linear , Parabenos/análise , Testes de Toxicidade , Poluentes Químicos da Água/análise
4.
Biofouling ; 34(1): 34-52, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29250978

RESUMO

Hazard assessments of Irgarol 1051, diuron, 2-(thiocyanomethylthio)benzothiazole (TCMTB), dichloro-octylisothiazolin (DCOIT), chlorothalonil, dichlofluanid, thiram, zinc pyrithione, copper pyrithione, triphenylborane pyridine (TPBP), capsaicin, nonivamide, tralopyril and medetomidine were performed to establish robust environmental quality standards (EQS), based on predicted no effect concentrations (PNECs). Microalgae, zooplankton, fish and amphibians were the most sensitive ecological groups to all the antifoulants evaluated, especially in the early life stages. No differences were identified between freshwater and seawater species. The use of toxicity tests with non-standard species is encouraged because they increase the datasets, allowing EQS to be derived from probabilistic-based PNECs whilst reducing uncertainties. The global ban of tributyltin (TBT) has been heralded as a major environmental success; however, substitute antifoulants may also pose risks to aquatic ecosystems. Environmental risk assessments (ERAs) have driven decision-makings for regulating antifouling products, but in many countries there is still a lack of regulation of antifouling biocides which should be addressed.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Desinfetantes/toxicidade , Monitoramento Ambiental/métodos , Compostos Organometálicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Incrustação Biológica/prevenção & controle , Desinfetantes/análise , Ecossistema , Água Doce/química , Compostos Organometálicos/análise , Medição de Risco , Água do Mar/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA