Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Org Synth ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38231062

RESUMO

Oxazolines are important heterocyclic systems due to their biological activities, such as antibacterial, antimalarial, anticancer, antiviral, anti-inflammatory, antifungal, antipyretic, and antileishmanial. They have been widely applied as chiral auxiliaries, polymers, catalysts, protecting groups, building blocks, and ligands in asymmetric synthesis. Due to their importance, many synthetic routes to prepare oxazoline moieties have been investigated and developed by researchers around the world. In this review, we summarized several synthetic methodologies published in the literature. The main substrates are nitriles, carboxylic acids, and acid derivatives, which react with a variety of reactants under conventional heating, microwave irradiation or ultrasound irradiation conditions. Syntheses via intramolecular cyclisation from amides have also been reported. Many publications have highlighted procedures based on solvent-free conditions using eco-friendly, reusable, and easy-availability catalysts.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120473, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715559

RESUMO

A state-of-the-art method was developed for repurposing nitrone-containing compounds in the chemosensory field, the ability of the designed molecules to chelate metal cations was evaluated, and their unprecedented solubility in water was confirmed. A facile, rapid, and solvent-free method of synthesizing small molecular mass chemosensors was developed by using a modulative α-aryl-N-aryl nitrone template. α-(Z)-Imidazol-4-ylmethylen-N-phenyl nitrone (Nit1) and α-(Z)-2-pyridyl-N-phenyl nitrone (Nit2) were prepared in 15 min, isolated in less than 60 min with ca. 90% yield, and screened against nine metal cations. Nit1 is a small-molecular-mass compound (188 g mol-1) that is water-soluble and has specificity for sensing Cu2+ with an association constant of K = 1.53 × 1010 and a limit of detection (LOD) of 0.06 ppm. These properties make Nit1 a competitive chemosensor for the detection of Cu2+ in aqueous solution. The nitrone-containing template used in this study is a step forward for new and small chemosensory entities.


Assuntos
Óxidos de Nitrogênio , Água , Limite de Detecção , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA