Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Proteome Res ; 16(9): 3370-3390, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28731347

RESUMO

Adult rattlesnakes within genus Crotalus express one of two distinct venom phenotypes, type I (hemorrhagic) and type II (neurotoxic). In Costa Rican Central American rattlesnake, ontogenetic changes in the concentration of miRNAs modulate venom type II to type I transition. Venomics and venom gland transcriptome analyses showed that adult C. simus and C. tzabcan expressed intermediate patterns between type II and type I venoms, whereas C. culminatus had a canonical type I venom. Neonate/juvenile and adult Mexican rattlesnakes showed notable inter- and intraspecific variability in the number, type, abundance and ontogenetic shifts of the transcriptional and translational venom gland activities. These results support a role for miRNAs in the ontogenetic venom compositional changes in the three congeneric Mexican rattlesnakes. It is worth noting the finding of dual-action miRNAs, which silence the translation of neurotoxic heterodimeric PLA2 crotoxin and acidic PLA2 mRNAs while simultaneously up-regulating SVMP-targeting mRNAs. Dual transcriptional regulation potentially explains the existence of mutually exclusive crotoxin-rich (type-II) and SVMP-rich (type-I) venom phenotypic dichotomy among rattlesnakes. Our results support the hypothesis that alterations of the distribution of miRNAs, modulating the translational activity of venom gland toxin-encoding mRNAs in response to an external cue, may contribute to the mechanism generating adaptive venom variability.


Assuntos
Venenos de Crotalídeos/genética , Crotalus/genética , MicroRNAs/genética , Proteogenômica/métodos , Proteoma/genética , Transcriptoma , Fatores Etários , Animais , Sequência de Bases , Cromatografia de Fase Reversa/métodos , Venenos de Crotalídeos/biossíntese , Venenos de Crotalídeos/classificação , Venenos de Crotalídeos/isolamento & purificação , Crotalus/crescimento & desenvolvimento , Crotalus/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Variação Genética , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Biossíntese de Proteínas , Proteogenômica/instrumentação , Proteoma/metabolismo , Especificidade da Espécie
2.
J Proteomics ; 135: 73-89, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25968638

RESUMO

Bothrops jararaca is a slender and semi-arboreal medically relevant pit viper species endemic to tropical and subtropical forests in southern Brazil, Paraguay, and northern Argentina (Misiones). Within its geographic range, it is often abundant and is an important cause of snakebite. Although no subspecies are currently recognized, geographic analyses have revealed the existence of two well-supported B. jararaca clades that diverged during the Pliocene ~3.8Mya and currently display a southeastern (SE) and a southern (S) Atlantic rainforest (Mata Atlântica) distribution. The spectrum, geographic variability, and ontogenetic changes of the venom proteomes of snakes from these two B. jararaca phylogroups were investigated applying a combined venom gland transcriptomic and venomic analysis. Comparisons of the venom proteomes and transcriptomes of B. jararaca from the SE and S geographic regions revealed notable interpopulational variability that may be due to the different levels of population-specific transcriptional regulation, including, in the case of the southern population, a marked ontogenetic venom compositional change involving the upregulation of the myotoxic PLA2 homolog, bothropstoxin-I. This population-specific marker can be used to estimate the proportion of venom from the southern population present in the B. jararaca venom pool used for the Brazilian soro antibotrópico (SAB) antivenom production. On the other hand, the southeastern population-specific D49-PLA2 molecules, BinTX-I and BinTX-II, lend support to the notion that the mainland ancestor of Bothrops insularis was originated within the same population that gave rise to the current SE B. jararaca phylogroup, and that this insular species endemic to Queimada Grande Island (Brazil) expresses a pedomorphic venom phenotype. Mirroring their compositional divergence, the two geographic B. jararaca venom pools showed distinct bioactivity profiles. However, the SAB antivenom manufactured in Vital Brazil Institute neutralized the lethal effect of both venoms to a similar extent. In addition, immobilized SAB antivenom immunocaptured most of the venom components of the venoms of both B. jararaca populations, but did not show immunoreactivity against vasoactive peptides. The Costa Rican bothropic-crotalic-lachesic (BCL) antivenom showed the same lack of reactivity against vasoactive peptides but, in addition, was less efficient immunocapturing PI- and PIII-SVMPs from the SE venom, and bothropstoxin-I, a CRISP molecule, and a D49-PLA2 from the venom of the southern B. jararaca phylogroup. The remarkable paraspecificity exhibited by the Brazilian and the Costa Rican antivenoms indicates large immunoreactive epitope conservation across the natural history of Bothrops, a genus that has its roots in the middle Miocene. This article is part of a Special Issue entitled: Omics Evolutionary Ecolog.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/biossíntese , Glândulas Exócrinas/metabolismo , Perfilação da Expressão Gênica , Floresta Úmida , Transcriptoma/fisiologia , Animais
3.
J Proteomics ; 114: 93-114, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25462430

RESUMO

The Caatinga lancehead, Bothrops erythromelas, is a medically relevant species, responsible for most of the snakebite accidents in most parts of its distribution range in northeastern Brazil. The spectrum and geographic variability of its venom toxins were investigated applying a venomics approach to venom pools from five geographic areas within the Caatinga ecoregion. Despite its wide habitat, populations of B. erythromelas from Ceará, Pernambuco, Juazeiro, Paraiba, and Ilha de Itaparica exhibit highly conserved venom proteomes. Mirroring their compositional conservation, the five geographic venom pools also showed qualitatively and quantitatively overlapping antivenomic profiles against antivenoms generated in Vital Brazil (BR) and Clodomiro Picado (CR) Institutes, using different venoms in the immunization mixtures. The paraspecificity exhibited by the Brazilian SAB and the Costa Rican BCL antivenoms against venom toxins from B. erythromelas indicates large immunoreactive epitope conservation across genus Bothrops during the last ~14 million years, thus offering promise for the possibility of generating a broad-spectrum bothropic antivenom. Biological Significance Accidental snakebite envenomings represent an important public health hazard in Brazil. Ninety per cent of the yearly estimated 20-30,000 snakebite accidents are caused by species of the Bothrops genus. Bothrops erythromelas, a small, moderately stocky terrestrial venomous snake, is responsible for most of the snakebite accidents in its broad distribution range in the Caatinga, a large ecoregion in northeastern Brazil. To gain a deeper insight into the spectrum of medically important toxins present in the venom of the Caatinga lancehead, we applied a venomics approach to define the proteome and geographic variability of adult B. erythromelas venoms from five geographic regions. Although intraspecific compositional variation between venoms among specimens from different geographic regions has long been appreciated by herpetologists and toxinologists as a general feature of highly adaptable and widely distributed snake species, the five B. erythromelas populations investigated exhibit highly conserved venom proteomes. The overall toxin profile of the Caatinga lancehead's venom explains the local and systemic effects observed in envenomations by B. erythromelas. The five geographic venom pools sampled also showed qualitatively and quantitatively overlapping antivenomic profiles against antivenoms generated using different bothropic venoms in the immunization mixtures. The large immunoreactive epitope conservation across genus Bothrops offers promise for the generation of a broad-spectrum bothropic antivenom.


Assuntos
Antivenenos/metabolismo , Bothrops/metabolismo , Venenos de Crotalídeos/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Animais , Antivenenos/análise , Bothrops/classificação , Brasil , Cromatografia Líquida de Alta Pressão , Venenos de Crotalídeos/análise , Venenos de Crotalídeos/imunologia , Ecossistema , Eletroforese em Gel Bidimensional , Fragmentos de Peptídeos/análise , Proteoma/análise , Especificidade da Espécie
4.
J. Proteomics ; 74(9): 1795-1809, Apr 12 , 2011.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1063780

RESUMO

The venom proteomes of Micrurus altirostris and M. corallinus were analyzed by combining snake venomics and venom gland transcriptomic surveys. In both coral snake species, 3FTx and PLA2 were the most abundant and diversified toxin families. 33 different 3FTxs and 13 PLA2 proteins, accounting respectively for 79.5% and 13.7% of the total proteins, were identified in the venom of M. altirostris. The venom of M. corallinus comprised 10 3FTx (81.7% of the venom proteome) and 4 (11.9%) PLA2 molecules. Transcriptomic data provided the full-length amino acid sequences of 18 (M. altirostris) and 10 (M. corallinus) 3FTxs, and 3 (M. altirostris) and 1 (M. corallinus) novel PLA2 sequences. In addition, venom from each species contained single members of minor toxin families: 3 common (PIII-SVMP, C-type lectin-like, L-amino acid oxidase) and 4 species-specific (CRISP, Kunitz-type inhibitor, lysosomal acid lipase in M. altirostris; serine proteinase in M. corallinus) toxin classes.


Assuntos
Animais , Elapidae/classificação , Elapidae/genética , Venenos Elapídicos/análise , Venenos de Serpentes/intoxicação , Espectrometria de Massas/métodos , Proteômica/métodos , Transcriptoma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA