Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 30(11): 2310-2323, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562300

RESUMO

We report the crystal structure of the copper-containing nitrite reductase (NirK) from the Gram-negative bacterium Sinorhizobium meliloti 2011 (Sm), together with complex structural alignment and docking studies with both non-cognate and the physiologically related pseudoazurins, SmPaz1 and SmPaz2, respectively. S. meliloti is a rhizobacterium used for the formulation of Medicago sativa bionoculants, and SmNirK plays a key role in this symbiosis through the denitrification pathway. The structure of SmNirK, solved at a resolution of 2.5 Å, showed a striking resemblance with the overall structure of the well-known Class I NirKs composed of two Greek key ß-barrel domains. The activity of SmNirK is ~12% of the activity reported for classical NirKs, which could be attributed to several factors such as subtle structural differences in the secondary proton channel, solvent accessibility of the substrate channel, and that the denitrifying activity has to be finely regulated within the endosymbiont. In vitro kinetics performed in homogenous and heterogeneous media showed that both SmPaz1 and SmPaz2, which are coded in different regions of the genome, donate electrons to SmNirK with similar performance. Even though the energetics of the interprotein electron transfer (ET) process is not favorable with either electron donors, adduct formation mediated by conserved residues allows minimizing the distance between the copper centers involved in the interprotein ET process.


Assuntos
Azurina/química , Proteínas de Bactérias/química , Nitrito Redutases/química , Sinorhizobium meliloti/enzimologia , Cristalografia por Raios X , Domínios Proteicos
2.
Biochim Biophys Acta Gen Subj ; 1862(3): 752-760, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29051066

RESUMO

The Cys-His bridge as electron transfer conduit in the enzymatic catalysis of nitrite to nitric oxide by nitrite reductase from Sinorhizobium meliloti 2011 (SmNir) was evaluated by site-directed mutagenesis, steady state kinetic studies, UV-vis and EPR spectroscopic measurements as well as computational calculations. The kinetic, structural and spectroscopic properties of the His171Asp (H171D) and Cys172Asp (C172D) SmNir variants were compared with the wild type enzyme. Molecular properties of H171D and C172D indicate that these point mutations have not visible effects on the quaternary structure of SmNir. Both variants are catalytically incompetent using the physiological electron donor pseudoazurin, though C172D presents catalytic activity with the artificial electron donor methyl viologen (kcat=3.9(4) s-1) lower than that of wt SmNir (kcat=240(50) s-1). QM/MM calculations indicate that the lack of activity of H171D may be ascribed to the Nδ1H…OC hydrogen bond that partially shortcuts the T1-T2 bridging Cys-His covalent pathway. The role of the Nδ1H…OC hydrogen bond in the pH-dependent catalytic activity of wt SmNir is also analyzed by monitoring the T1 and T2 oxidation states at the end of the catalytic reaction of wt SmNir at pH6 and 10 by UV-vis and EPR spectroscopies. These data provide insight into how changes in Cys-His bridge interrupts the electron transfer between T1 and T2 and how the pH-dependent catalytic activity of the enzyme are related to pH-dependent structural modifications of the T1-T2 bridging chemical pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Nitrito Redutases/metabolismo , Sinorhizobium meliloti/enzimologia , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cobre/química , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Histidina/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Nitrito Redutases/química , Nitrito Redutases/genética , Nitritos/metabolismo , Oxirredução , Mutação Puntual , Conformação Proteica , Proteínas Recombinantes/metabolismo , Sinorhizobium meliloti/genética , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA