Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616474

RESUMO

In this study, the effect of single-walled carbon nanotubes (SWCNTs) on the cross-linking of natural rubber (NR) using organic peroxides was investigated. NR-SWCNTs nanocomposites were prepared in an open two-roller mill followed by vulcanization with the compression molding process. Three different organic peroxides, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (T29), dicumyl peroxide (DCP), and 2,5-bis(tert-butylperoxy)-2,5-dimethyl-3-hexyne (T145), were used as vulcanizing agents. SWCNTs promote a remarkable reduction in the vulcanization time and increase the degree of cross-linking of vulcanized rubber when compared with neat or natural rubber-carbon-black composites; the same tendency was obtained in the NR-SWCNTs vulcanized with sulfur. Additionally, the mechanical performance of the NR-SWCNTs composites was significantly improved up to 75, 83, 27, and 10% for tensile strength, moduli, tear strength, and hardness. Raman spectroscopy studies evidence the occurrence of reaction between nanotube walls and free radicals generated from using organic peroxides during the vulcanization process. These results demonstrate that the incorporation of SWCNTs in combination with the use of organic peroxides for the NR vulcanization represents a potential alternative for the improvement of the physicochemical properties of NR composites.

2.
Materials (Basel) ; 14(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466693

RESUMO

This paper focuses on reporting results obtained by the spark plasma sintering (SPS) consolidation and characterization of aluminum-based nanocomposites reinforced with concentrations of 0.5 wt%, 1 wt% and 2 wt% of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Experimental characterization performed by SEM shows uniform carbon nanotube (CNT) dispersion as well as carbon clusters located in the grain boundary of the Al matrix. The structural analysis and crystallite size calculation were performed by X-ray diffraction tests, detecting the characteristic CNT diffraction peak only for the composites reinforced with MWCNTs. Furthermore, a considerable increment in the crystallite size value for those Al samples reinforced and sintered with 1 wt% of CNTs was observed. Hardness tests show an improvement in the composite surface hardness of about 11% and 18% for those samples reinforced with 2 wt% of SWNCTs and MWCNTs, respectively. Conductivity measurements show that the Al samples reinforced with 2 wt% of MWCNTs and with 0.5 wt% SWCNTs reach the highest IACS values of 50% and 34%, respectively.

3.
Materials (Basel) ; 15(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35009402

RESUMO

The strategy of embedding conductive materials on polymeric matrices has produced functional and wearable artificial electronic skin prototypes capable of transduction signals, such as pressure, force, humidity, or temperature. However, these prototypes are expensive and cover small areas. This study proposes a more affordable manufacturing strategy for manufacturing conductive layers with 6 × 6 matrix micropatterns of RTV-2 silicone rubber and Single-Walled Carbon Nanotubes (SWCNT). A novel mold with two cavities and two different micropatterns was designed and tested as a proof-of-concept using Low-Force Stereolithography-based additive manufacturing (AM). The effect SWCNT concentrations (3 wt.%, 4 wt.%, and 5 wt.%) on the mechanical properties were characterized by quasi-static axial deformation tests, which allowed them to stretch up to ~160%. The elastomeric soft material's hysteresis energy (Mullin's effect) was fitted using the Ogden-Roxburgh model and the Nelder-Mead algorithm. The assessment showed that the resulting multilayer material exhibits high flexibility and high conductivity (surface resistivity ~7.97 × 104 Ω/sq) and that robust soft tooling can be used for other devices.

4.
J Pharm Anal ; 9(1): 62-69, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30740259

RESUMO

This study presents for the first time a new composite of carbon paste (CP), single-walled carbon nanotubes (SWCNTs) and Nd2O3 (NdOX). This versatile composite (NdOX-SWCNT/CPE) was applied to the oxidation of paracetamol (PCM). The newly formed surface was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The results showed greater conductivity and a higher surface area for the composite than those of the carbon paste alone. Moreover, the anodic peak currents for PCM increased from 1.6 to 3.6 µA with CPE and NdOX-SWCNT/CPE, indicating an increase of nearly 51.0% for the anodic peak current. On the other hand, the anodic peak potentials shifted from 0.67 to 0.57 V. The detection limits were 0.05 µmol/L with NdOX-SWCNT/CPE and 0.50 µmol/L with SWCNT/CPE. The relative standard deviations (RSDs) were 1.5% (n = 7). The accuracy and interference of the methods were evaluated with a urine chemistry control spiked with known quantities of PCM, uric acid, dopamine, ascorbic acid, caffeine, acetylsalicylic acid, tartrazine, sunset yellow, allure red, rutin, morin and metal ions. Finally, the novelty and usefulness of the composite were evaluated to quantify PCM in pharmaceutical dosage forms such as tablets, powders and syrups for children.

5.
Univ. sci ; 22(3): 201-214, Oct.-Dec. 2017. ilus, graf
Artigo em Inglês | LILACS, COLNAL | ID: biblio-904714

RESUMO

Abstract This paper presents a study of the fluorescence quenching of 1-hydroxypyrene-3,6,8-trisulfonic acid (HPTS) in the presence of single-walled carbon nanotubes (SWCNT) using a fluorescence method. To investigate the quenching mechanism (dynamic or static) of HPTS, Stern-Volmer plots of single walled carbon nanotubes at different temperatures were used. The positive deviation from linearity in Stern-Volmer plots suggests that single walled carbon nanotubes follow a static quenching mechanism evidenced by the formation of a stable ground state complex. The results presented here help us to clarify the quenching mechanism in the interaction of a pyrene derived dye and carbon nanotubes. This study will open new possibilities in the use of the conjugate formed by SWCNTs and HPTS in the fabrication of a biosensor based on intracellular fluorescent probes.


Resumen Este artículo presenta el estudio de la desactivación de florescencia del ácido 1-hidroxipyreno-3,6,8-trisulfónico (HPTS) en presencia de nanotubos de carbono de pared única (SWCNT). Para investigar el mecanismo de desactivación (dinámico o estático) del HPTS se evaluaron nanotubos de carbono de pared única a diferentes temperaturas y se analizaron por medio de gráficas Stern-Volmer. La desviación positiva de la linealidad en las gráficas Stern-Volmer sugiere que los nanotubos de carbono de pared única actúan por medio de un mecanismo de desactivación estático, que se evidencia también por la formación de un complejo estable en estado fundamental. Los resultados presentados aquí nos ayudan a aclarar el mecanismo de desactivación de fluorescencia cuando tiene lugar la interacción entre un colorante derivado del pireno y nanotubos de carbono. Este estudio abre nuevas posibilidades para el uso de conjugados formados por SWCNT y HPTS en la fabricación de un biosensor basado en sondas fluorescentes intracelulares.


Resumo Este artigo apresentao estudo da diminuicao da fluorescência do ácido 1-hidroxipireno-3,6,8-trisulfônico (HPTS) em presença de nanotubos de carbono de parede simples (SWCNT). Para investigar o mecanismo da desativação (dinâmico ou estático) do HPTS se avaliaram nanotubos de parede simples em diferentes temperaturas e se analisaram por meio de gráficos Stern-Volmer. O desvio positivo de linearidade nos gráficos Stern-Volmer sugere que os nanotubos de carbono de parede simples atuam por meio de um mecanismo de desativação estática, que também se evidencia pela formação de um complexo estável fundamental. Os resultados apresentados aqui nos ajudam a aclarar o mecanismo de desativação de fluorescência quando ocorre a interação entre um corante derivado do pireno e nanotubos de carbono. Este estudo abre novas possibilidades para o uso de conjugados formados por SWCNT e HPTS na fabricação de um biosensor baseado em sondas fluorescentes intracelulares.


Assuntos
Nanotubos de Carbono/estatística & dados numéricos , Fluorescência
6.
ACS Nano ; 11(10): 9997-10002, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28953353

RESUMO

Thermal Brownian motors (TBMs) are nanoscale machines that exploit thermal fluctuations to provide useful work. We introduce a TBM-based nanopump which enables continuous water flow through a carbon nanotube (CNT) by imposing an axial thermal gradient along its surface. We impose spatial asymmetry along the CNT by immobilizing certain points on its surface. We study the performance of this molecular motor using molecular dynamics (MD) simulations. From the MD trajectories, we compute the net water flow and the induced velocity profiles for various imposed thermal gradients. We find that spatial asymmetry modifies the vibrational modes of the CNT induced by the thermal gradient, resulting in a net water flow against the thermal gradient. Moreover, the kinetic energy associated with the thermal oscillations rectifies the Brownian motion of the water molecules, driving the flow in a preferred direction. For imposed thermal gradients of 0.5-3.3 K/nm, we observe continuous net flow with average velocities up to 5 m/s inside CNTs with diameters of 0.94, 1.4, and 2.0 nm. The results indicate that the CNT-based asymmetric thermal motor can provide a controllable and robust system for delivery of continuous water flow with potential applications in integrated nanofluidic devices.

7.
Biotechnol Prog ; 33(3): 654-657, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28263434

RESUMO

This research investigated the use of single-walled carbon nanotubes (SWNTs) as an additive to increase the permeability of a bacterial cell wall. Recombinant Escherichia coli BL21 (DE3) that expressed ß-lactamase were exposed to SWNTs under various levels of concentration and agitation. Activity of ß-lactamase in the culture fluid and transmission electron microscopy (TEM) were used to determine the amount of released protein, and visually examine the permeability enhancement of the cells. It was found that ß-lactamase release in the culture fluid occurred in a dose-dependent manner with treatment by SWNTs and was also dependent on agitation rate. Based on TEM, this treatment successfully caused an increase in permeability without significant damage to the cell wall. Consequently, SWNTs can be used as an enhancement agent to cause the release of intracellular proteins. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:654-657, 2017.


Assuntos
Escherichia coli/metabolismo , Nanotecnologia/métodos , Nanotubos de Carbono/ultraestrutura , Microscopia Eletrônica de Transmissão , beta-Lactamases/metabolismo
8.
J Appl Toxicol ; 37(2): 214-221, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27320845

RESUMO

Single-wall carbon nanotubes functionalized with polyethylene glycol (SWCNT-PEG) are promising materials for biomedical applications such as diagnostic devices and controlled drug-release systems. However, several questions about their toxicological profile remain unanswered. Thus, the aim of this study was to investigate the action of SWCNT-PEG in Danio rerio zebrafish embryos at the molecular, physiological and morphological levels. The SWCNT used in this study were synthesized by the high-pressure carbon monoxide process, purified and then functionalized with distearoyl phosphatidylethanolamine block copolymer-PEG (molecular weight 2 kDa). The characterization process was carried out with low-resolution transmission electron microscopy, thermogravimetric analysis and Raman spectroscopy. Individual zebrafish embryos were exposed to the SWCNT-PEG. Toxic effects occurred only at the highest concentration tested (1 ppm) and included high mortality rates, delayed hatching and decreased total larval length. For all the concentrations tested, the alkaline comet assay revealed no genotoxicity, and Raman spectroscopy measurements on the histological slices revealed no intracellular nanotubes. The results shown here demonstrate that SWCNT-PEG has low toxicity in zebrafish embryos, but more studies are needed to understand what mechanisms are involved. However, the presence of residual metals is possibly among the primary mechanisms responsible for the toxic effects observed, because the purification process was not able to remove all metal contamination, as demonstrated by the thermogravimetric analysis. More attention must be given to the toxicity of these nanomaterials before they are used in biomedical applications. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Mutagênicos/toxicidade , Nanotubos de Carbono/toxicidade , Polietilenoglicóis/toxicidade , Peixe-Zebra , Animais , Dano ao DNA , Relação Dose-Resposta a Droga , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/genética , Frequência Cardíaca/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Nanotubos de Carbono/química , Polietilenoglicóis/química , Propriedades de Superfície , Análise de Sobrevida , Peixe-Zebra/embriologia
9.
Anal Chim Acta ; 909: 51-9, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26851084

RESUMO

This work reports the synthesis and characterization of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr); the critical analysis of the experimental conditions to obtain the efficient dispersion of the modified carbon nanotubes; and the analytical performance of glassy carbon electrodes (GCE) modified with the dispersion (GCE/SWCNT-Polytyr) for the highly sensitive quantification of polyphenols. Under the optimal conditions, the calibration plot for the amperometric response of gallic acid (GA) shows a linear range between 5.0 × 10(-7) and 1.7 × 10(-4) M, with a sensitivity of (518 ± 5) m AM(-1) cm(-2), and a detection limit of 8.8 nM. The proposed sensor was successfully used for the determination of total polyphenolic content in tea extracts.


Assuntos
Nanotubos de Carbono/química , Peptídeos/química , Polifenóis/análise , Eletrodos , Ácido Gálico/química , Estrutura Molecular
10.
Toxicol In Vitro ; 29(4): 657-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25681759

RESUMO

Single-walled carbon nanotubes (SWCNTs) are used in biological systems with impact in biomedicine in order to improve diagnostics and treatment of diseases. However, their effects upon the vascular system, are not fully understood. Endothelium and smooth muscle cells (SMC) communicate through release of vasoactive factors as nitric oxide (NO) to maintain vascular tone. The aim of this study was to evaluate the effect of SWCNTs on vascular tone using isolated rat aortic rings, which were exposed to SWCNTs (0.1, 1 and 10 µg/mL) in presence and absence of endothelium. SWCNTs induced vasodilation in both conditions, indicating that this effect was independent on endothelium; moreover that vasodilation was NO-independent, since its blockage with L-NAME did not modify the observed effect. Together, these results indicate that SWCNTs induce vasodilation in the macrovasculature, may be through a direct interaction with SMC rather than endothelium independent of NO production. Further investigation is required to fully understand the mechanisms of action and mediators involved in the signaling pathway induced by SWCNTs on the vascular system.


Assuntos
Nanotubos de Carbono/toxicidade , Vasodilatação/efeitos dos fármacos , Animais , Aorta Torácica/efeitos dos fármacos , Endotélio Vascular/fisiologia , Técnicas In Vitro , Masculino , Tono Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar
11.
Food Chem ; 143: 348-53, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24054250

RESUMO

A capillary electrophoresis method to determine four sulfonylureas in grain samples was developed using 10mM of 1-butyl-3-methyl imidazolium tetrafluoroborate (bminBF4) as electrophoretic buffer solution. 2mgL(-1) of Surfactant Coated-Single Wall-Carbon Nanotubes (SC-SWCNTs) was added to the buffer solution to improve the resolution. In this way, the separation of nicosulfuron, ethoxysulfuron, sulfometuron methyl and chlorsulfuron was carried out in 16min without using organic solvents. A clean up-preconcentration procedure was done prior to inject the sample into the CE instrument, in order to achieve the established maximum residue limits (MRLs). So, the detection limits (LODs) for each analytes were between 16.8 and 26.6µgkg(-1). The relative standard deviations (RSDs) were in the range 1.9-6.7%. A recovery study using the so-called matrix matched calibration demonstrates that no matrix interferences were found throughout the determination. The recovery percentages were ranged between 80% and 113%.


Assuntos
Grão Comestível/química , Eletroforese Capilar/métodos , Contaminação de Alimentos/análise , Herbicidas/análise , Compostos de Sulfonilureia/análise , Eletroforese Capilar/instrumentação , Líquidos Iônicos/química , Líquidos Iônicos/classificação , Limite de Detecção , Nanotubos de Carbono/química
12.
Food Chem Toxicol ; 62: 355-60, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23994091

RESUMO

Carbon nanotubes (CNTs) are formed by rolling up a single graphite sheet into a tube. Among the different types of CNTs, the multi-walled carbon nanotubes (MWCNTs) comprise a set of concentric nanotubes with perfect structures. Several uses for MWCNTs have been suggested to be included in biological applications such as manufacturing of biosensors, carriers of drugs. However, before these materials can be put on the market, it is necessary to know their genotoxic effects. Thus, this study aims to evaluate the mutagenicity of multi-walled carbon nanotubes (MWCNTs) functionalized in somatic cells of Drosophila melanogaster, using the somatic mutation and recombination test (SMART). This assay detects the loss of heterozygosity of marker genes expressed phenotypically on the wings of the fly. Larvae of three days were used, resulting from ST cross, with basal levels of the cytochrome P450 and larvae of high metabolic bioactivity capacity (HB cross). They were treated with different concentrations of MWCNTs functionalized. The MH descendants, analyzed in both ST and HB crosses, had no significant effects on the frequency of mutant. Based on the results and on the experimental conditions mentioned in this study, it was concluded that MWCNTs were not mutagenic in D. melanogaster.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Animais , Relação Dose-Resposta a Droga , Drosophila melanogaster/genética , Feminino , Larva/efeitos dos fármacos , Masculino , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Mutação , Recombinação Genética , Taxa de Sobrevida , Asas de Animais/citologia , Asas de Animais/efeitos dos fármacos
13.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;45(8): 771-776, Aug. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-643661

RESUMO

Intravesical chemotherapy is an important part of the treatment for superficial bladder cancer. However, the response to it is limited and its side effects are extensive. Functional single-walled carbon nanotubes (SWNT) have shown promise for tumor-targeted accumulation and low toxicity. In the present study, we performed in vivo and in vitro investigations to determine whether SWNT-based drug delivery could induce high tumor depression in rat bladder cancer and could decrease the side effects of pirarubicin (tetrahydropyranyl-adriamycin, THP). We modified SWNT with phospholipid-branched polyethylene glycol and constructed an SWNT-THP conjugate via a cleavable ester bond. The cytotoxicity of SWNT-THP against the human bladder cancer cell line BIU-87 was evaluated in vitro. Rat bladder cancer in situ models constructed by N-methyl-N-nitrosourea intravesical installation (1 g/L, 2 mg/rat once every 2 weeks for 8 weeks) were used for in vivo evaluation of the cytotoxicity of SWNT and SWNT-THP. Specific side effects in the THP group including urinary frequency (N = 12), macroscopic hematuria (N = 1), and vomiting (N = 7) were identified; however, no side effects were observed with SWNT-THP treatment. Flow cytometry was used to assess the cytotoxicity in vitro and in vivo. Results showed that SWNT alone did not yield significant tumor depression compared to saline (1.74 ± 0.56 and 1.23 ± 0.42%) in vitro. SWNT-THP exhibited higher tumor depression than THP-saline in vitro (74.35 ± 2.56 and 51.24 ± 1.45%) and in vivo (52.46 ± 2.41 and 96.85 ± 0.85%). The present findings indicate that SWNT delivery of THP for the treatment of bladder cancer leads to minimal side effects without loss of therapeutic efficacy. Therefore, this nanotechnology may play a crucial role in the improvement of intravesical treatment of bladder cancer.


Assuntos
Animais , Feminino , Humanos , Ratos , Antineoplásicos/administração & dosagem , Doxorrubicina/análogos & derivados , Nanotubos de Carbono , Neoplasias da Bexiga Urinária/tratamento farmacológico , Administração Intravesical , Antineoplásicos/efeitos adversos , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA