Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068188

RESUMO

Inverted perovskite solar cells (PSCs) have gained much attention due to their low hysteresis effect, easy fabrication, and good stability. In this research, an inverted perovskite solar cell ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Ag structure was simulated and optimized using SCAPS-1D version 3.3.10 software. The influence on the device of parameters, including perovskite thickness, total defect density, series and shunt resistances, and operating temperature, are discussed and analyzed. With optimized parameters, the efficiency increased from 13.47% to 18.33%. Then, a new SiOx/ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Ag device was proposed which includes a silicon-rich oxide (SiOx) layer. This material was used as the down-conversion energy material, which converts high-energy photons (ultraviolet UV light) into low-energy photons (visible light), improving the stability and absorption of the device. Finally, with SiOx, we obtained an efficiency of 22.46% in the simulation. Therefore, the device with the SiOx layer is the most suitable as it has better values for current density-voltage output and quantum efficiency than the device without SiOx.

2.
Nanomaterials (Basel) ; 13(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049364

RESUMO

In this work, hybrid structures formed by nanostructured layers, which contain materials, such as porous silicon (PSi), carbon nanotubes (CNTs), graphene oxide (GO), and silicon-rich oxide (SRO), were studied. The PSi layers were obtained by electrochemical etching over which CNTs and GO were deposited by spin coating. In addition, SRO layers, in which silicon nanocrystals are embedded, were obtained by hot filament chemical vapor deposition (HFCVD) technique. Photoluminescence (PL) spectra were obtained from the hybrid structures with which a comparative analysis was completed among different PL ones. The SRO layers were used to confine the CNTs and GO. The main purpose of making these hybrid structures is to modulate their PL response and obtain different emission energy regions in the PL response. It was found that the PL spectra of the CNTs/SRO and GO/SRO structures exhibit a shift towards high energies compared to those obtained from the PSi layers; likewise, the PSi/CNTs/SRO and PSi/GO/SRO structures show a similar behavior. To identify the different emission mechanisms originated by PSi, GO, CNTs, and SRO, the PL spectra were deconvolved. It was found that the Psi/CNTs/SRO and Psi/GO/SRO structures exhibit a PL shift in respect to the PSi layers, for this reason, the modulation of the PL emission of the structures makes these hybrid structures promising candidates to be applied in the field of photonic and electroluminescent devices.

3.
Nanoscale Res Lett ; 9(1): 507, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25276105

RESUMO

In systems in atomic scale and nanoscale such as clusters or agglomerates constituted by particles from a few to less than 100 atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nanostructures display optical and electronic properties significantly different to those found in corresponding bulk materials. Silicon agglomerates embedded in silicon rich oxide (SRO) films have optical properties, which have been reported to be directly dependent on silicon nanocrystal size. Furthermore, the room temperature photoluminescence (PL) of SRO has repeatedly generated a huge interest due to its possible applications in optoelectronic devices. However, a plausible emission mechanism has not been widely accepted in the scientific community. In this work, we present a short review about the experimental results on silicon nanoclusters in SRO considering different techniques of growth. We focus mainly on their size, Raman spectra, and photoluminescence spectra. With this as background, we employed the density functional theory with a functional B3LYP and a basis set 6-31G* to calculate the optical and electronic properties of clusters of silicon (constituted by 15 to 20 silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism, experimentally found in thin SRO films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA