Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 24(8): 203, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006676

RESUMO

The present work focuses on establishing a function to rank the stability of small silicon clusters to characterize their magic numbers. This function is composed by a thermodynamic descriptor, the atomization Gibbs free energy, and indirect kinetic descriptors, the highest occupied molecular orbital energy and the lowest excitation energy of each system. The silicon clusters geometries were optimized using density functional theory within a hybrid meta-GGA approximation (M06), while the electronic energy was corrected by single-point calculation using CASPT2 level of theory to obtain the molecular properties. Both methodologies were combined with polarized diffused triple zeta, 6-311++G(3df,3pd), basis set for all atoms. Some molecular properties and their combinations were considered to create the aforementioned function to represent the clusters chemical stability and their magic numbers. The chosen stability ranking function, called ε3, presents results in agreement with the previous mass spectrometry experimental data identifying 4, 6, 7 and 10 as magic numbers for small silicon clusters. We believe this stability ranking function can be useful to study other intramolecular atomic and molecular clusters. Graphical abstract Stability ranking function, Îµ31, applied on Sin (n = 2 - 11) clusters showing Fukui's functions for the Sin (n = 2 - 11) obtained by the electronic density difference through CASPT2//M06/6-311++G(3df,3pd) with an isosurface value equal to 0.003.

2.
Nanoscale Res Lett ; 9(1): 507, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25276105

RESUMO

In systems in atomic scale and nanoscale such as clusters or agglomerates constituted by particles from a few to less than 100 atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nanostructures display optical and electronic properties significantly different to those found in corresponding bulk materials. Silicon agglomerates embedded in silicon rich oxide (SRO) films have optical properties, which have been reported to be directly dependent on silicon nanocrystal size. Furthermore, the room temperature photoluminescence (PL) of SRO has repeatedly generated a huge interest due to its possible applications in optoelectronic devices. However, a plausible emission mechanism has not been widely accepted in the scientific community. In this work, we present a short review about the experimental results on silicon nanoclusters in SRO considering different techniques of growth. We focus mainly on their size, Raman spectra, and photoluminescence spectra. With this as background, we employed the density functional theory with a functional B3LYP and a basis set 6-31G* to calculate the optical and electronic properties of clusters of silicon (constituted by 15 to 20 silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism, experimentally found in thin SRO films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA