Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Psychiatry ; 15: 1396550, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803673

RESUMO

Introduction: Stress is a pervasive health concern known to induce physiological changes, particularly impacting the vulnerable hippocampus and the morphological integrity of its main residing cells, the hippocampal neurons. Eye Movement Desensitization and Reprocessing (EMDR), initially developed to alleviate emotional distress, has emerged as a potential therapeutic/preventive intervention for other stress-related disorders. This study aimed to investigate the impact of Acute Variable Stress (AVS) on hippocampal neurons and the potential protective effects of EMDR. Methods: Rats were exposed to diverse stressors for 7 days, followed by dendritic morphology assessment of hippocampal neurons using Golgi-Cox staining. Results: AVS resulted in significant dendritic atrophy, evidenced by reduced dendritic branches and length. In contrast, rats receiving EMDR treatment alongside stress exposure exhibited preserved dendritic morphology comparable to controls, suggesting EMDR's protective role against stressinduced dendritic remodeling. Conclusions: These findings highlight the potential of EMDR as a neuroprotective intervention in mitigating stress-related hippocampal alterations.

2.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982594

RESUMO

The hippocampus is a brain region crucially involved in regulating stress responses and highly sensitive to environmental changes, with elevated proliferative and adaptive activity of neurons and glial cells. Despite the prevalence of environmental noise as a stressor, its effects on hippocampal cytoarchitecture remain largely unknown. In this study, we aimed to investigate the impact of acoustic stress on hippocampal proliferation and glial cytoarchitecture in adult male rats, using environmental noise as a stress model. After 21 days of noise exposure, our results showed abnormal cellular proliferation in the hippocampus, with an inverse effect on the proliferation ratios of astrocytes and microglia. Both cell lineages also displayed atrophic morphologies with fewer processes and lower densities in the noise-stressed animals. Our findings suggest that, stress not only affects neurogenesis and neuronal death in the hippocampus, but also the proliferation ratio, cell density, and morphology of glial cells, potentially triggering an inflammatory-like response that compromises their homeostatic and repair functions.


Assuntos
Hipocampo , Neuroglia , Ratos , Masculino , Animais , Hipocampo/metabolismo , Neurônios/metabolismo , Astrócitos/metabolismo , Microglia/metabolismo , Neurogênese/fisiologia
3.
J Comp Neurol ; 531(6): 663-680, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36629001

RESUMO

Facial nerve injury in rats have been widely used to study functional and structural changes that occur in the injured motoneurons and other central nervous system structures related with sensorimotor processing. A decrease in long-term potentiation of hippocampal CA3-to-CA1 commissural synapse has recently been reported related to this peripheral injury. Additionally, it has been found increased corticosterone plasmatic levels, impairment in spatial memory consolidation, and hippocampal microglial activation in animals with facial nerve axotomy. In this work, we analyzed the neuronal morphology of hippocampal CA1 and CA3 pyramidal neurons in animals with either reversible or irreversible facial nerve injury. For this purpose, brain tissues of injured animals sacrificed at different postlesion times, were stained with the Golgi-Cox method and compared with control brains. It was found that both reversible and irreversible facial nerve injury-induced significant decreases in dendritic tree complexity, dendritic length, branch points, and spine density of hippocampal neurons. However, such changes' timing varied according to hippocampal area (CA1 vs. CA3), dendritic area (apical vs. basal), and lesion type (reversible vs. irreversible). In general, the observed changes were transient when animals had the possibility of motor recovery (reversible injury), but perdurable if the recovery from the lesion was impeded (irreversible injury). CA1 apical and CA3 basal dendritic tree morphology were more sensible to irreversible injury. It is concluded that facial nerve injury induced significant changes in hippocampal CA1 and CA3 pyramidal neurons morphology, which could be related to LTP impairments and microglial activation in the hippocampal formation, previously described.


Assuntos
Traumatismos do Nervo Facial , Ratos , Animais , Traumatismos do Nervo Facial/patologia , Nervo Facial , Axotomia , Células Piramidais/fisiologia , Hipocampo/fisiologia , Neurônios Motores , Dendritos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA