RESUMO
The combination of a polyphenol, quercetin, with dasatinib initiated clinical trials to evaluate the safety and efficacy of senolytics in idiopathic pulmonary fibrosis, a lung disease associated with the presence of senescent cells. Another approach to senotherapeutics consists of controlling inflammation related to cellular senescence or "inflammaging", which participates, among other processes, in establishing pulmonary fibrosis. We evaluate whether polyphenols such as caffeic acid, chlorogenic acid, epicatechin, gallic acid, quercetin, or resveratrol combined with different senotherapeutics such as metformin or rapamycin, and antifibrotic drugs such as nintedanib or pirfenidone, could present beneficial actions in an in vitro model of senescent MRC-5 lung fibroblasts. A senescent-associated secretory phenotype (SASP) was evaluated by the measurement of interleukin (IL)-6, IL-8, and IL-1ß. The senescent-associated ß-galactosidase (SA-ß-gal) activity and cellular proliferation were assessed. Fibrosis was evaluated using a Picrosirius red assay and the gene expression of fibrosis-related genes. Epithelial-mesenchymal transition (EMT) was assayed in the A549 cell line exposed to Transforming Growth Factor (TGF)-ß in vitro. The combination that demonstrated the best results was metformin and caffeic acid, by inhibiting IL-6 and IL-8 in senescent MRC-5 cells. Metformin and caffeic acid also restore cellular proliferation and reduce SA-ß-gal activity during senescence induction. The collagen production by senescent MRC-5 cells was inhibited by epicatechin alone or combined with drugs. Epicatechin and nintedanib were able to control EMT in A549 cells. In conclusion, caffeic acid and epicatechin can potentially increase the effectiveness of senotherapeutic drugs in controlling lung diseases whose pathophysiological component is the presence of senescent cells and fibrosis.
Assuntos
Senescência Celular , Fibroblastos , Pulmão , Polifenóis , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Senescência Celular/efeitos dos fármacos , Polifenóis/farmacologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Células A549 , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Metformina/farmacologia , Ácidos Cafeicos/farmacologia , Indóis/farmacologia , Senoterapia/farmacologia , Linhagem Celular , Fenótipo Secretor Associado à Senescência/efeitos dos fármacos , Sirolimo/farmacologia , Interleucina-8/metabolismo , Interleucina-8/genética , Fator de Crescimento Transformador beta/metabolismo , PiridonasRESUMO
BACKGROUND: Cellular senescence is a state characterized by cell-cycle arrest and apoptotic resistance. Senescence in cancer may be induced by oncogenes or therapy. While cellular senescence might play an important role in protection against cancer development, elevated and uncontrolled senescent cells accumulation may promote carcinogenesis by secreting a collection of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP). MATERIAL AND METHODS: We determined the gene expression at mRNA level of selected cellular senescence markers (p16 and LMNB1) and SASP factors (IL-6, IL-1b, CXCL-1 and TNF-α) in 72 cancerous tissues and 64 normal tissues obtained from patients with head and neck squamous cell carcinoma (HNSCC) and correlated this data with patients' clinical follow-up. RESULTS: Our results indicate higher levels of selected SASP factors in cancerous compared to normal tissues. We presented the relationship between SASP factors expression at the transcript level and the progression of the disease. Moreover, we proposed CXCL1 as a candidate biomarker differentiating normal tissues from cancerous ones and IL1b expression as a molecular factor related to increased TNM stage. CONCLUSION: Our primary study indicates that SASP expression may be associated with some clinicopathological features. However, a more detailed study is needed to present specific role of senescence-related mechanism and SASPs especially in tumor therapy response and in relation to the patient's immune system condition.
Assuntos
Neoplasias de Cabeça e Pescoço , Fenótipo Secretor Associado à Senescência , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Senescência Celular/genética , Carcinogênese , Neoplasias de Cabeça e Pescoço/genética , FenótipoRESUMO
Despite not dividing, senescent cells acquire the ability to synthesize and secrete a plethora of bioactive molecules, a feature known as the senescence-associated secretory phenotype (SASP). In addition, senescent cells often upregulate autophagy, a catalytic process that improves cell viability in stress-challenged cells. Notably, this "senescence-related autophagy" can provide free amino acids for the activation of mTORC1 and the synthesis of SASP components. However, little is known about the functional status of mTORC1 in models of senescence induced by CDK4/6 inhibitors (e.g., Palbociclib), or the effects that the inhibition of mTORC1 or the combined inhibition of mTORC1 and autophagy have on senescence and the SASP. Herein, we examined the effects of mTORC1 inhibition, with or without concomitant autophagy inhibition, on Palbociclib-driven senescent AGS and MCF-7 cells. We also assessed the pro-tumorigenic effects of conditioned media from Palbociclib-driven senescent cells with the inhibition of mTORC1, or with the combined inhibition of mTORC1 and autophagy. We found that Palbociclib-driven senescent cells display a partially reduced activity of mTORC1 accompanied by increased levels of autophagy. Interestingly, further mTORC1 inhibition exacerbated the senescent phenotype, a phenomenon that was reversed upon autophagy inhibition. Finally, the SASP varied upon inhibiting mTORC1, or upon the combined inhibition of mTORC1 and autophagy, generating diverse responses in cell proliferation, invasion, and migration of non-senescent tumorigenic cells. Overall, variations in the SASP of Palbociclib-driven senescent cells with the concomitant inhibition of mTORC1 seem to depend on autophagy.
Assuntos
Senescência Celular , Piperazinas , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Piperazinas/farmacologia , Carcinogênese , AutofagiaRESUMO
Endometriosis causes immunological and cellular alterations. Endometriosis lesions have lower levels of lamin b1 than the endometrium. Moreover, high levels of pro-inflammatory markers are observed in the peritoneal fluid, follicular fluid, and serum in endometriosis lesions. Thus, we hypothesized that the accumulation of senescent cells in endometriosis tissues would facilitate endometriosis maintenance in an inflammatory microenvironment. To study senescent cell markers and the senescence-associated secretory phenotype (SASP) in endometriosis lesions, we conducted a cross-sectional study with 27 patients undergoing video laparoscopy for endometriosis resection and 19 patients without endometriosis. Endometriosis lesions were collected from patients with endometriosis, while eutopic endometrium was collected from patients both with and without endometriosis. Tissues were evaluated for senescence markers (p16Ink4a, lamin b1, and IL-1ß) and interleukin concentrations. The expression of p16Ink4a increased in lesions compared to that in eutopic endometrium from endometriosis patients in the secretory phase. In the proliferative phase, lesions exhibited lower lamin b1 expression but higher IL-4 expression than the eutopic endometrium. Further, IL-1ß levels were higher in the lesions than in the eutopic endometrium in both the secretory and proliferative phases. We believe that our findings may provide targets for better therapeutic interventions to alleviate the symptoms of endometriosis.
Assuntos
Endometriose , Interleucina-1beta/metabolismo , Biomarcadores/metabolismo , Senescência Celular , Estudos Transversais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Endometriose/patologia , Endométrio/metabolismo , Feminino , Humanos , Lamina Tipo BRESUMO
The severity of lesions that develop in patients infected by Leishmania braziliensis is mainly associated with a highly cytotoxic and inflammatory cutaneous environment. Recently, we demonstrated that senescent T and NK cells play a role in the establishment and maintenance of this tissue inflammation. Here, we extended those findings using transcriptomic analyses that demonstrate a strong co-induction of senescence and pro-inflammatory gene signatures in cutaneous leishmaniasis (CL) lesions. The senescence-associated signature was characterized by marked expression of key genes such as ATM, Sestrin 2, p16, p21 and p38. The cell type identification from deconvolution of bulk sequencing data showed that the senescence signature was linked with CD8+ effector memory and TEMRA subsets and also senescent NK cells. A key observation was that the senescence markers in the skin lesions are age-independent of patients and were correlated with lesion size. Moreover, a striking expression of the senescence-associated secretory phenotype (SASP), pro-inflammatory cytokine and chemokines genes was found within lesions that were most strongly associated with the senescent CD8 TEMRA subset. Collectively, our results confirm that there is a senescence transcriptomic signature in CL lesions and supports the hypothesis that lesional senescent cells have a major role in mediating immunopathology of the disease.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Imunossenescência/genética , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/etiologia , Leishmaniose Cutânea/patologia , Transcriptoma , Biomarcadores , Biópsia , Biologia Computacional/métodos , Citocinas/genética , Citocinas/metabolismo , Bases de Dados Genéticas , Suscetibilidade a Doenças/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Leishmaniose Cutânea/metabolismo , Carga Parasitária , Pele/patologiaRESUMO
Trypanosoma cruzi infects and replicates within a wide variety of immune and non-immune cells. Here, we investigated early cellular responses induced in NIH-3T3 fibroblasts upon infection with trypomastigote forms of T. cruzi. We show that fibroblasts were susceptible to T. cruzi infection and started to release trypomastigotes to the culture medium after 4 days of infection. Also, we found that T. cruzi infection reduced the number of fibroblasts in 3-day cell cultures, by altering fibroblast proliferation. Infected fibroblasts displayed distinctive phenotypic alterations, including enlarged and flattened morphology with a nuclei accumulation of senescence-associated heterochromatin foci. In addition, infection induced an overexpression of the enzyme senescence-associated ß-galactosidase (SA-ß-gal), an activation marker of the cellular senescence program, as well as the production of cytokines and chemokines involved with the senescence-associated secretory phenotype (SASP) such as IL-6, TNF-α, IL-1ß, and MCP-1. Infected fibroblasts released increased amounts of stress-associated factors nitric oxide (NO) and reactive oxygen species (ROS), and the treatment with antioxidants deferoxamine (DFO) and N-acetylcysteine reduced ROS generation, secretion of SASP-related cytokine IL-6, SA-ß-gal activity, and parasite load by infected fibroblasts. Taken together, our data suggest that T. cruzi infection triggers a rapid cellular stress response followed by induction of a senescent-like phenotype in NIH-3T3 fibroblasts, enabling them to act as reservoirs of parasites during the early stages of the Chagas disease.