Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Ann Hepatol ; 29(6): 101538, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147129

RESUMO

INTRODUCTION AND OBJECTIVES: Prostate apoptosis response protein-4 (PAR-4) is considered a tumor suppressor. However, the role of PAR-4 in hepatocellular carcinoma (HCC) has rarely been reported. The study explores the role of PAR-4 in the malignant behaviors of HCC cells. MATERIALS AND METHODS: TCGA database was applied to analyze the expression of PAR-4 in HCC. Evaluated PAR-4 relationship with clinical parameters and prognosis by tissue microarray; expression of STAT3, p-STAT3, Src and Ras was detected by Western blotting or laser confocal microscopy. Cell scratch and flow cytometry assays were used to observe IL-6 regulation of the malignant behaviors of HCC cells. The tumorigenic potential of HCC cells in vivo was evaluated in a nude mouse tumor model. RESULTS: Analysis indicated that the expression of PAR-4 in HCC tissues was significantly higher than that in normal liver tissues; and PAR-4 interacted with STAT3. KEGG analysis showed that PAR-4 plays a role in the Janus kinase (JAK)/STAT signaling pathway. The positive expression rate of PAR-4 in HCC tissues was significantly higher than that in adjacent tissues. Positive correlation between IL-6 and PAR-4 expression in the HCC tissues. Exogenous IL-6 significantly promoted the proliferation and migration of HCC cells and up-regulated the expression of PAR-4 and p-STAT3 in HCC cells. Interference of the expression of PAR-4 could reduce the malignant behaviors of HCC cells and inhibit tumorigenesis in a nude mouse tumor model. CONCLUSIONS: PAR-4 expression is positively correlated with HCC; PAR-4 promotes malignant behavior of HCC cells mediated by the IL-6/STAT3 signaling pathway.

2.
Cancers (Basel) ; 16(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39061137

RESUMO

INTRODUCTION: The tumor microenvironment (TME) plays a crucial role in the progression, invasion, and metastasis of cervical carcinoma (CC). Tumor-associated macrophages (TAMs) are significant components of the CC TME, but studies on their correlation with CC progression are still controversial. This study aimed to investigate the relationship between TAM infiltration, the STAT3/NF-κB signaling pathway, and Overall Survival (OS) in CC patients. METHODS: In a retrospective study, 691 CC patients who had received a definitive histopathologic diagnosis of CC scored by the FIGO staging system and not undergone preoperative treatment were selected from a database. The effect of TAM infiltration on tumor progression biomarkers using Tissue Microarray (TMA) and immunohistochemistry was evaluated. Furthermore, the impact of the expression of these biomarkers and clinical-pathological parameters on recurrence-free (RF) and OS using Kaplan-Meier and multivariable Cox regression methods was also analyzed. RESULTS: High stromal CD163 + 204 + TAMs density and via STAT3 and NF-κB pathways was relevant to the expression of E-cadherin, Vimentin, MMP9, VEGFα, Bcl-2, Ki-67, CD25, MIF, FOXP3, and IL-17 (all p < 0.0001). In addition, elevated TNM staging IV had a strong association correlation with STAT3 and NF-κB pathways (p < 0.0001), CD25 (p < 0.001), VEGFα (p < 0.001), MIF (p < 0.0001), and Ki-67 (p < 0.0001). On the other hand, overall and recurrence survival was shown to be strongly influenced by the expression of SNAIL (HR = 1.52), E-cadherin (HR = 1.78), and Ki-67 (HR = 1.44). CONCLUSION: M2-TAM and via STAT3/NF-κB pathways had a strong effect on CC tumor progression which reverberated in the severity of clinicopathological findings, becoming an important factor of poor prognosis.

3.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999946

RESUMO

The tumor cells reprogram their metabolism to cover their high bioenergetic demands for maintaining uncontrolled growth. This response can be mediated by cytokines such as IL-2, which binds to its receptor and activates the JAK/STAT pathway. Some reports show a correlation between the JAK/STAT pathway and cellular metabolism, since the constitutive activation of STAT proteins promotes glycolysis through the transcriptional activation of genes related to energetic metabolism. However, the role of STAT proteins in the metabolic switch induced by cytokines in cervical cancer remains poorly understood. In this study, we analyzed the effect of IL-2 on the metabolic switch and the role of STAT5 in this response. Our results show that IL-2 induces cervical cancer cell proliferation and the tyrosine phosphorylation of STAT5. Also, it induces an increase in lactate secretion and the ratio of NAD+/NADH, which suggest a metabolic reprogramming of their metabolism. When STAT5 was silenced, the lactate secretion and the NAD+/NADH ratio decreased. Also, the expression of HIF1α and GLUT1 decreased. These results indicate that STAT5 regulates IL-2-induced cell proliferation and the metabolic shift to aerobic glycolysis by regulating genes related to energy metabolism. Our results suggest that STAT proteins modulate the metabolic switch in cervical cancer cells to attend to their high demand of energy required for cell growth and proliferation.


Assuntos
Proliferação de Células , Interleucina-2 , Fator de Transcrição STAT5 , Neoplasias do Colo do Útero , Humanos , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Feminino , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Interleucina-2/metabolismo , Interleucina-2/farmacologia , Glicólise/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , NAD/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Transdução de Sinais/efeitos dos fármacos , Ácido Láctico/metabolismo
4.
Cell Biochem Biophys ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033092

RESUMO

Unbalanced redox status and constitutive STAT3 activation are related to several aspects of tumor biology and poor prognosis, including metastasis and drug resistance. The triple-negative breast cancer (TNBC) is listed as the most aggressive and exhibits the worst prognosis among the breast cancer subtypes. Although the mechanism of reactive oxygen species (ROS) generation led to STAT3 activation is described, there is no data concerning the STAT3 influence on redox homeostasis in TNBC. To address the role of STAT3 signaling in redox balance, we inhibited STAT3 in TNBC cells and investigated its impact on total ROS levels, contents of hydroperoxides, nitric oxide (NO), and total glutathione (GSH), as well as the expression levels of 3-nitrotyrosine (3NT), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and nuclear factor kappa B (NF-κB)/p65. Our results indicate that ROS levels depend on the STAT3 activation, while the hydroperoxide level remained unchanged, and NO and 3NT expression increased. Furthermore, GSH levels, Nrf2, and NF-κB/p65 protein levels are decreased in the STAT3-inhibited cells. Accordingly, TNBC patients' data from TCGA demonstrated that both STAT3 mRNA levels and STAT3 signature are correlated to NF-κB/p65 and Nrf2 signatures. Our findings implicate STAT3 in controlling redox balance and regulating redox-related genes' expression in triple-negative breast cancer.

5.
J Surg Oncol ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825982

RESUMO

BACKGROUND: Breast cancer (BC) is associated with a continuous increase in incidence, with high mortality rates in several countries. CD44, STAT3, and SOX2 are related to regulating of somatic cell division, tumorigenesis, and metastasis in BC. METHODS: A cross-sectional study was carried out at the Hospital de Cancer de Pernambuco (HCP) between 2017 and 2018. Fifty-one women with locally advanced (LA) and 14 with metastatic BC were included in the study. RESULTS: High CD44+/CD24neg and CD44+/CD24neg/SOX2+ levels in Luminal B (LB), HER2+, and triple-negative breast cancer (TNBC) compared with controls (p < 0.05). Low CD44+/CD24negSTAT3+ levels in LB, HER2+, and TNBC compared with controls (p < 0.05). High T lymphocytes, and low STAT3 + T, and SOX2 + T levels in BC patients (p < 0.05). High SOX2 + T levels in patients with axillary lymph node-negative (N0) compared with the axillary lymph node-positives (N1 and N2 groups; p < 0.05). High SOX2 + T levels in N1 compared to N2 (p < 0.05). High T lymphocytes and low SOX2 + T levels in the LA tumor compared to metastatic disease (p = 0.0007 and p = 0.02, respectively). High CD44 + /CD24negSTAT3+, and T lymphocyte levels in TNBC patients with LA tumor compared to metastatic (p < 0.05). Low STAT3 + T levels in TBNC patients with LA tumor compared to metastatic (p = 0.0266). CONCLUSION: SOX2 and STAT3 expression on circulating T lymphocytes and CD44 + /CD24neg cells in peripheral blood have prognostic roles in breast cancer. SOX2 and STAT3 expression are potential predictive biomarkers of disease progression in breast cancer regardless of tumor subtype.

6.
Cells ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891028

RESUMO

Cervical cancer (CC) remains among the most frequent cancers worldwide despite advances in screening and the development of vaccines against human papillomavirus (HPV), involved in virtually all cases of CC. In mid-income countries, a substantial proportion of the cases are diagnosed in advanced stages, and around 40% of them are diagnosed in women under 49 years, just below the global median age. This suggests that members of this age group share common risk factors, such as chronic inflammation. In this work, we studied samples from 46 patients below 45 years old, searching for a miRNA profile regulating cancer pathways. We found 615 differentially expressed miRNAs between tumor samples and healthy tissues. Through bioinformatic analysis, we found that several of them targeted elements of the JAK/STAT pathway and other inflammation-related pathways. We validated the interactions of miR-30a and miR-34c with JAK1 and STAT3, respectively, through dual-luciferase and expression assays in cervical carcinoma-derived cell lines. Finally, through knockdown experiments, we observed that these miRNAs decreased viability and promoted proliferation in HeLa cells. This work contributes to understanding the mechanisms through which HPV regulates inflammation, in addition to its canonical oncogenic function, and brings attention to the JAK/STAT signaling pathway as a possible diagnostic marker for CC patients younger than 45 years. To our knowledge to date, there has been no previous description of a panel of miRNAs or even ncRNAs in young women with locally advanced cervical cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Inflamação , MicroRNAs , Fator de Transcrição STAT3 , Transdução de Sinais , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Adulto , Inflamação/genética , Inflamação/patologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Células HeLa , Janus Quinase 1/metabolismo , Janus Quinase 1/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Pessoa de Meia-Idade
7.
Front Immunol ; 15: 1385473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720890

RESUMO

Interferons (IFNs) are a family of cytokines that activate the JAK-STAT signaling pathway to induce an antiviral state in cells. Interleukin 27 (IL-27) is a member of the IL-6 and/or IL-12 family that elicits both pro- and anti-inflammatory responses. Recent studies have reported that IL-27 also induces a robust antiviral response against diverse viruses, both in vitro and in vivo, suggesting that IFNs and IL-27 share many similarities at the functional level. However, it is still unknown how similar or different IFN- and IL-27-dependent signaling pathways are. To address this question, we conducted a comparative analysis of the transcriptomic profiles of human monocyte-derived macrophages (MDMs) exposed to IL-27 and those exposed to recombinant human IFN-α, IFN-γ, and IFN-λ. We utilized bioinformatics approaches to identify common differentially expressed genes between the different transcriptomes. To verify the accuracy of this approach, we used RT-qPCR, ELISA, flow cytometry, and microarrays data. We found that IFNs and IL-27 induce transcriptional changes in several genes, including those involved in JAK-STAT signaling, and induce shared pro-inflammatory and antiviral pathways in MDMs, leading to the common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs)Importantly, the ability of IL-27 to induce those responses is independent of IFN induction and cellular lineage. Additionally, functional analysis demonstrated that like IFNs, IL-27-mediated response reduced chikungunya and dengue viruses replication in MDMs. In summary, IL-27 exhibits properties similar to those of all three types of human IFN, including the ability to stimulate a protective antiviral response. Given this similarity, we propose that IL-27 could be classified as a distinct type of IFN, possibly categorized as IFN-pi (IFN-π), the type V IFN (IFN-V).


Assuntos
Febre de Chikungunya , Dengue , Interleucina-27 , Janus Quinases , Macrófagos , Transdução de Sinais , Humanos , Células Cultivadas , Febre de Chikungunya/imunologia , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/fisiologia , Vírus da Dengue/imunologia , Interferons/metabolismo , Interleucina-27/metabolismo , Interleucinas/imunologia , Interleucinas/farmacologia , Janus Quinases/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Transdução de Sinais/genética , Fatores de Transcrição STAT/metabolismo , Transcriptoma , Replicação Viral
8.
Mol Biol Rep ; 51(1): 499, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598121

RESUMO

INTRODUCTION: Aerobic physical training (APT) reduces eosinophilic airway inflammation, but its effects and mechanisms in severe asthma remain unknown. METHODS: An in vitro study employing key cells involved in the pathogenesis of severe asthma, such as freshly isolated human eosinophils, neutrophils, and bronchial epithelial cell lineage (BEAS-2B) and lung fibroblasts (MRC-5 cells), was conducted. Additionally, an in vivo study using male C57Bl/6 mice, including Control (Co; n = 10), Trained (Exe; n = 10), house dust mite (HDM; n = 10), and HDM + Trained (HDM + Exe; n = 10) groups, was carried out, with APT performed at moderate intensity, 5x/week, for 4 weeks. RESULTS: HDM and bradykinin, either alone or in combination, induced hyperactivation in human neutrophils, eosinophils, BEAS-2B, and MRC-5 cells. In contrast, IL-10, the primary anti-inflammatory molecule released during APT, inhibited these inflammatory effects, as evidenced by the suppression of numerous cytokines and reduced mRNA expression of the B1 receptor and ACE-2. The in vivo study demonstrated that APT decreased bronchoalveolar lavage levels of bradykinin, IL-1ß, IL-4, IL-5, IL-17, IL-33, TNF-α, and IL-13, while increasing levels of IL-10, klotho, and IL-1RA. APT reduced the accumulation of polymorphonuclear cells, lymphocytes, and macrophages in the peribronchial space, as well as collagen fiber accumulation, epithelial thickness, and mucus accumulation. Furthermore, APT lowered the expression of the B1 receptor and ACE-2 in lung tissue and reduced bradykinin levels in the lung tissue homogenate compared to the HDM group. It also improved airway resistance, tissue resistance, and tissue damping. On a systemic level, APT reduced total leukocytes, eosinophils, neutrophils, basophils, lymphocytes, and monocytes in the blood, as well as plasma levels of IL-1ß, IL-4, IL-5, IL-17, TNF-α, and IL-33, while elevating the levels of IL-10 and IL-1RA. CONCLUSION: These findings indicate that APT inhibits the severe asthma phenotype by targeting kinin signaling.


Assuntos
Asma , Bradicinina , Humanos , Animais , Camundongos , Masculino , Interleucina-10 , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-17 , Interleucina-33 , Interleucina-4 , Interleucina-5 , Fator de Necrose Tumoral alfa
9.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473794

RESUMO

MicroRNAs (miRs) act as important post-transcriptional regulators of gene expression in glial cells and have been shown to be involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we investigated the effects of agathisflavone, a biflavonoid purified from the leaves of Cenostigma pyramidale (Tul.), on modulating the expression of miRs and inflammatory mediators in activated microglia. C20 human microglia were exposed to oligomers of the ß-amyloid peptide (Aß, 500 nM) for 4 h or to lipopolysaccharide (LPS, 1 µg/mL) for 24 h and then treated or not with agathisflavone (1 µM) for 24 h. We observed that ß-amyloid and LPS activated microglia to an inflammatory state, with increased expression of miR-146a, miR-155, IL1-ß, IL-6, and NOS2. Treatment with agathisflavone resulted in a significant reduction in miR146a and miR-155 induced by LPS or Aß, as well as inflammatory cytokines IL1-ß, IL-6, and NOS2. In cells stimulated with Aß, there was an increase in p-STAT3 expression that was reduced by agathisflavone treatment. These data identify a role for miRs in the anti-inflammatory effect of agathisflavone on microglia in models of neuroinflammation and AD.


Assuntos
Doença de Alzheimer , Biflavonoides , MicroRNAs , Humanos , Biflavonoides/farmacologia , Microglia/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Citocinas/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/metabolismo
10.
Genes (Basel) ; 15(2)2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38397230

RESUMO

Rheumatoid Arthritis (RA) is a multifactorial autoimmune disease. Currently, several genes play an important role in the development of the disease. The objective was to evaluate the association of the STAT4 rs7574865 and rs897200 gene variants with RA susceptibility, DAS28, RF, and anti-CCP in Western and Southern Mexico populations. Genotyping was performed on 476 samples (cases = 240; controls = 236) using the Taqman® system and qPCR probes. Disease activity was assessed using DAS28 and HAQ DI. CRP, ESR, RF, and anti-CCP were determined for clinical assessment. Our study showed there is a statistically significant association with susceptibility to RA for the rs7574865 variant in the Western population for the GT and TT genotypes. The same genotypes also showed a moderate-to-high activity according to DAS28 and positive anti-CCP compared to the control group. This association was not found in the Southern population. This work confirms the association of the rs7574865 variant with RA, as well as a moderate-to-high activity and positive anti-CCP in the Western population but not in the Southern population. No association of the rs897200 variant was found in any of the studied populations.


Assuntos
Anticorpos Antiproteína Citrulinada , Artrite Reumatoide , Humanos , México , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Artrite Reumatoide/genética , Fator de Transcrição STAT4/genética
11.
J Endocr Soc ; 8(3): bvae015, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38370444

RESUMO

Growth hormone (GH) modifies liver gene transcription in a sexually dimorphic manner to meet liver metabolic demands related to sex; thus, GH dysregulation leads to sex-biased hepatic disease. We dissected the steps of the GH regulatory cascade modifying GH-dependent genes involved in metabolism, focusing on the male-predominant genes Lcn13, Asns, and Cyp7b1, and the female-predominant genes Hao2, Pgc1a, Hamp2, Cyp2a4, and Cyp2b9. We explored mRNA expression in 2 settings: (i) intact liver GH receptor (GHR) but altered GH and insulin-like growth factor 1 (IGF1) levels (NeuroDrd2KO, HiGH, aHepIGF1kd, and STAT5bCA mouse lines); and (ii) liver loss of GHR, with or without STAT5b reconstitution (aHepGHRkd, and aHepGHRkd + STAT5bCA). Lcn13 was downregulated in males in most models, while Asns and Cyp7b1 were decreased in males by low GH levels or action, or constant GH levels, but unexpectedly upregulated in both sexes by the loss of liver Igf1 or constitutive Stat5b expression. Hao, Cyp2a4, and Cyp2b9 were generally decreased in female mice with low GH levels or action (NeuroDrd2KO and/or aHepGHRkd mice) and increased in HiGH females, while in contrast, Pgc1a was increased in female NeuroDrd2KO but decreased in STAT5bCA and aHepIGF1kd females. Bioinformatic analysis of RNAseq from aHepGHRkd livers stressed the greater impact of GHR loss on wide gene expression in males and highlighted that GH modifies almost completely different gene signatures in each sex. Concordantly, we show that altering different steps of the GH cascade in the liver modified liver expression of Lcn13, Asns, Cyp7b1, Hao2, Hamp2, Pgc1a, Cyp2a4, and Cyp2b9 in a sex- and gene-specific manner.

12.
Mol Biol Rep ; 51(1): 64, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170343

RESUMO

BACKGROUND: Glioblastoma is a brain malignant tumor grade IV, highly invasive. Alterations in several signaling pathways are involved in glioblastoma development. In this work, we evaluated the IFN-γ canonical signaling pathway in glioblastoma cells and its effect on cell viability and migration. METHODS: The levels of STAT1/pSTAT1, IRF1, and PD-L1 in LN-18 glioblastoma cells were analyzed using western blotting. Cell viability was evaluated by calcein-AM/propidium iodide assays, and a wound healing assay was used to study the migration of glioblastoma cells treated with IFN-γ. Our aim was to determine the expression of IFN-γ signaling elements in cell lines and tissue from glioblastoma samples and examine the relationship between these elements and the survival of glioblastoma patients. The following platforms were utilized for analysis: the CCLE (Cancer Cell Line Encyclopedia), UALCAN (University of Alabama at Birmingham Cancer data analysis Portal), GEPIA (Gene Expression Profiling Interactive Analysis), and GENT2 (Gene Expression patterns across Normal and Tumor tissues). RESULTS: Our results evidenced that IFN-γ signaling increases non-phosphorylated and phosphorylated STAT1 levels and promotes the upregulation of IRF1 and PD-L1 in glioblastoma cells. The activation of IFN-γ signaling increased cell migration without affecting the viability of glioblastoma cells. Furthermore, in silico analysis showed that the elements of IFN-γ signaling pathways (IFNGR1/IFNGR2/STAT1/IRF1) are upregulated in human glioblastoma samples. The upregulation of IFN-γ signaling was associated with shorter survival in glioblastoma patients. CONCLUSION: IFN-γ signaling pathway is upregulated in glioblastoma, displaying pro-tumor activity. Thus, IFN-γ signaling elements may be potential biomarkers and targets for treating glioblastoma.


Assuntos
Glioblastoma , Interferon gama , Humanos , Interferon gama/metabolismo , Glioblastoma/genética , Antígeno B7-H1/metabolismo , Regulação para Cima , Transdução de Sinais , Linhagem Celular Tumoral
13.
Brain Sci ; 14(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38248305

RESUMO

Glioblastoma (GBM) is the most aggressive and treatment-resistant brain tumor. In the GBM microenvironment, interaction with microglia is associated with the dysregulation of cytokines, chemokines, and miRNAs, contributing to angiogenesis, proliferation, anti-apoptosis, and chemoresistance. The flavonoid rutin can inhibit glioma cell growth associated with microglial activation and production of pro-inflammatory mediators by mechanisms that are still poorly understood. The present study investigated the effect of rutin on viability, regulation of miRNA-125b, and the STAT3 expression in GBM cells, as well as the effects on the modulation of the inflammatory profile and STAT3 expression in microglia during indirect interaction with GBM cells. Human GL15-GBM cells and human C20 microglia were treated or not with rutin for 24 h. Rutin (30-50 µM) significantly reduced the viability of GL15 cells; however, it did not affect the viability of microglia. Rutin (30 µM) significantly reduced the expression of miRNA-125b in the cells and secretome and STAT3 expression. Microglia submitted to the conditioned medium from GBM cells treated with rutin showed reactive morphology associated with reduced expression of IL-6, TNF, and STAT3. These results reiterate the anti-glioma effects of the flavonoid, which may also modulate microglia towards a more responsive anti-tumor phenotype, constituting a promising molecule for adjuvant therapy to GBM.

14.
Braz J Otorhinolaryngol ; 90(1): 101362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38006726

RESUMO

OBJECTIVE: Nasopharyngeal Carcinoma (NPC) is a malignancy of epithelium of epithelium of the nasopharynx, with the highest incidence of otolaryngeal malignancies. A growing number of studies confirm that Circular RNA (circRNA) plays an important role in tumor development, including Hsa_circ_0013561. This study aims to elucidate the process and mechanism of NPC regulation hsa_circ_0013561. METHODS: In this study, circRNA expression nodes and subcellular localization in NPC tissues were analyzed by fluorescence in situ hybridization. The expression of hsa_circ_0013561 in NPC cells was further clarified by RT-qPCR. At the same time, the lentivirus vector interfered by hsa_circ_0013561 was constructed and transfected. The cell proliferation was detected by CCK-8 method, EdU assay and plate cloning assay. The cell cycle and apoptosis were detected by flow cytometry, and the cell migration ability was detected by wound healing assay and Transwell assay. Western blotting examined the expression of apoptosis, Epithelial-Mesenchymal Transition (EMT)-associated proteins, and Janus Kinase/Signal Transductor and Activator of Transcription (JAK/STAT) signaling pathway-related proteins. RESULTS: The results showed that the expression of hsa_circ_0013561 in NPC samples was significantly upregulated and hsa_circ_0013561 localized in the cytoplasm. After down-regulating hsa_circ_0013561 expression, it significantly inhibited the proliferation and metastasis ability of NPC, inhibited EMT progression, and promoted apoptosis. Further studies showed that interference hsa_circ_0013561 significantly inhibited JAK2/STAT3 signaling pathway activation and induced the expression of apoptosis-related proteins. CONCLUSION: In summary, we found that hsa_circ_0013561 is a pro-tumor circRNA in NPC, which can reduce the activation of JAK2/STAT3 pathway by knocking down hsa_circ_0013561, thereby slowing down the malignant progression of NPC. OXFORD CENTRE FOR EVIDENCE-BASED MEDICINE 2011 LEVELS OF EVIDENCE: Level 4.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , RNA Circular/genética , RNA Circular/metabolismo , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Transdução de Sinais/genética , Proliferação de Células/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
15.
J Pineal Res ; 76(1): e12923, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37990784

RESUMO

Immune-pineal axis activation is part of the assembly of immune responses. Proinflammatory cytokines inhibit the pineal synthesis of melatonin while inducing it in macrophages by mechanisms dependent on nuclear factor-κB (NF-κB) activation. Cytokines activating the Janus kinase/signal transducer and activator of transcription (STAT) pathways, such as interferon-gamma (IFN-γ) and interleukin-10 (IL-10), modulate melatonin synthesis in the pineal, bone marrow (BM), and spleen. The stimulatory effect of IFN-γ upon the pineal gland depends on STAT1/NF-κB interaction, but the mechanisms controlling IL-10 effects on melatonin synthesis remain unclear. Here, we evaluated the role of STAT3 and NF-κB activation by IL-10 upon the melatonin synthesis of rats' pineal gland, BM, spleen, and peritoneal cells. The results show that IL-10-induced interaction of (p)STAT3 with specific NF-κB dimmers leads to different cell effects. IL-10 increases the pineal's acetylserotonin O-methyltransferase (ASMT), N-acetylserotonin, and melatonin content via nuclear translocation of NF-κB/STAT3. In BM, the nuclear translocation of STAT3/p65-NF-κB complexes increases ASMT expression and melatonin content. Increased pSTAT3/p65-NF-κB nuclear translocation in the spleen enhances phosphorylated serotonin N-acetyltransferase ((p)SNAT) expression and melatonin content. Conversely, in peritoneal cells, IL-10 leads to NF-κB p50/p50 inhibitory dimmer nuclear translocation, decreasing (p)SNAT expression and melatonin content. In conclusion, IL-10's effects on melatonin production depend on the NF-κB subunits interacting with (p)STAT3. Thus, variations of IL-10 levels and downstream pathways during immune responses might be critical regulatory factors adjusting pineal and extra-pineal synthesis of melatonin.


Assuntos
Melatonina , Glândula Pineal , Ratos , Animais , NF-kappa B/metabolismo , Glândula Pineal/metabolismo , Melatonina/farmacologia , Interleucina-10/metabolismo , Transdução de Sinais
16.
Rev. Assoc. Med. Bras. (1992, Impr.) ; Rev. Assoc. Med. Bras. (1992, Impr.);70(3): e20231167, 2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1558872

RESUMO

SUMMARY OBJECTIVE: The aim of this study was to analyze possible alterations (morphological and inflammatory) in the ocular cells of fetuses from mothers with insulin resistance exposed to saturated fatty acids through the period of pregnancy. METHODS: Wistar female rats were induced to develop insulin resistance before pregnancy. Fetuses' skulls were collected on the 20th day of intrauterine life. The rats were separated on the first day of management into two groups according to the diet applied: control group (C): diet containing soybean oil as a source of fat; and saturated fatty acid group (S): diet containing butter as a source of fat. RESULTS: Histological and immunohistochemical analyses have been conducted. The immunohistochemical analyses of interleukin 6, suppressor of cytokine signaling, 3 and signal transducer and activator of transcription 3 did not demonstrate alterations in the expression of proteins in the fetuses of mothers fed with a saturated fatty diet. Moreover, no histopathological changes were noticed between groups. CONCLUSION: The saturated fatty diet does not induce tissue changes or activate the Janus kinase/signal transducer and activator of transcription signaling pathway during eye development in the fetuses of mothers with insulin resistance.

17.
Braz. j. otorhinolaryngol. (Impr.) ; Braz. j. otorhinolaryngol. (Impr.);90(1): 101362, 2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1534094

RESUMO

Abstract Objective Nasopharyngeal Carcinoma (NPC) is a malignancy of epithelium of epithelium of the nasopharynx, with the highest incidence of otolaryngeal malignancies. A growing number of studies confirm that Circular RNA (circRNA) plays an important role in tumor development, including Hsa_circ_0013561. This study aims to elucidate the process and mechanism of NPC regulation hsa_circ_0013561. Methods In this study, circRNA expression nodes and subcellular localization in NPC tissues were analyzed by fluorescence in situ hybridization. The expression of hsa_circ_0013561 in NPC cells was further clarified by RT-qPCR. At the same time, the lentivirus vector interfered by hsa_circ_0013561 was constructed and transfected. The cell proliferation was detected by CCK-8 method, EdU assay and plate cloning assay. The cell cycle and apoptosis were detected by flow cytometry, and the cell migration ability was detected by wound healing assay and Transwell assay. Western blotting examined the expression of apoptosis, Epithelial-Mesenchymal Transition (EMT)-associated proteins, and Janus Kinase/Signal Transductor and Activator of Transcription (JAK/STAT) signaling pathway-related proteins. Results The results showed that the expression of hsa_circ_0013561 in NPC samples was significantly upregulated and hsa_circ_0013561 localized in the cytoplasm. After down-regulating hsa_circ_0013561 expression, it significantly inhibited the proliferation and metastasis ability of NPC, inhibited EMT progression, and promoted apoptosis. Further studies showed that interference hsa_circ_0013561 significantly inhibited JAK2/STAT3 signaling pathway activation and induced the expression of apoptosis-related proteins. Conclusion In summary, we found that hsa_circ_0013561 is a pro-tumor circRNA in NPC, which can reduce the activation of JAK2/STAT3 pathway by knocking down hsa_circ_0013561, thereby slowing down the malignant progression of NPC. Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence Level 4.

18.
Nanomedicine (Lond) ; 18(27): 2001-2019, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38084660

RESUMO

Background: B cells are pivotal in systemic lupus erythematosus and autoimmune disease pathogenesis. Materials & methods: To address this, Nile Red-labeled polylactic acid nanoparticles (NR-PLA NPs) loaded with the JAK inhibitor baricitinib (BARI), specifically targeting JAK1 and JAK2 in B cells, were developed. Results: Physicochemical characterization confirmed NP stability over 30 days. NR-PLA NPs were selectively bound and internalized by CD19+ B cells, sparing other leukocytes. In contrast to NR-PLA NPs, BARI-NR-PLA NPs significantly dampened B-cell activation, proliferation and plasma cell differentiation in healthy controls. They also inhibited key cytokine production. These effects often surpassed those of equimolar-free BARI. Conclusion: This study underscores the potential of PLA NPs to regulate autoreactive B cells, offering a novel therapeutic avenue for autoimmune diseases.


In this study, a new approach to treating autoimmune diseases, particularly systemic lupus erythematosus, was investigated by focusing on a type of immune cell called B cells. Special nanoparticles (NPs) labeled with Nile Red (NR) and made from polylactic acid (PLA) were created. These NPs were loaded with a drug called baricitinib (BARI), which targets specific proteins (JAK1 and JAK2) in B cells. This was done to determine if these NPs could help control the behavior of B cells, which are important in autoimmune diseases. First, these NPs remained stable for a long time (30 days). The NR-labeled PLA NPs (NR-PLA NPs) were also good at attaching to and entering a specific type of B cell called CD19+ B cells while leaving other types of immune cells alone. The use of NR-PLA NPs loaded with BARI produced exciting results. These NPs were better at reducing the activity, growth and transformation of B cells into plasma cells compared with the drug BARI by itself. They also stopped the production of certain immune system signals called cytokines, which are usually overactive in autoimmune diseases. This work suggests that PLA NPs could be a promising way to control overactive B cells that contribute to autoimmune diseases like systemic lupus erythematosus. This could open a new and exciting path for developing treatments for these conditions.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Nanopartículas , Humanos , Poliésteres/química , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Nanopartículas/química
19.
J Clin Immunol ; 44(1): 20, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38129739

RESUMO

While SARS-CoV-2 infection causes a mild disease in most children, SARS-CoV-2 infection may be lethal in a few of them. In the defense against SARS-CoV-2, type I interferons are key players, and several studies have identified a defective or neutralized interferon response as the cause of overwhelming viral infection. However, inappropriate, untimely, or excessive interferon production may also be detrimental to the host. Here, we describe two patients with STAT1 gain-of-function (GOF), a known type I interferonopathy, who died of COVID-19. Whole-exome sequencing and interferon-gamma-activated sequence (GAS) and interferon-sensitive responsive element (ISRE) reporter assay were performed to identify and characterize STAT1 variants. Patient 1 developed hemophagocytic lymphohistiocytosis (HLH) in the context of COVID-19 infection and died in less than a week at the age of 4 years. Patient 2 developed a high fever, cough, and hypoxemia and succumbed to COVID-19 pneumonia at the age of 5 years. Two heterozygous missense variants, p.E563Q and p.K344E, in STAT1 were identified. Functional validation by reporter assay and immunoblot confirmed that both variants are gain-of-function (GOF). GOF variants transiently expressing cells exhibited enhanced upregulation of downstream genes, including ISG15, MX1, and OAS1, in response to IFN-α stimulation. A catastrophic course with HLH or acute respiratory failure is thought to be associated with inappropriate immunoregulatory mechanisms to handle SARS-CoV-2 in STAT1 GOF. While most patients with inborn errors of immunity who developed COVID-19 seem to handle it well, these cases suggest that patients with STAT1-GOF might be at risk of developing fatal complications due to SARS-CoV-2.


Assuntos
COVID-19 , Interferon Tipo I , Criança , Pré-Escolar , Humanos , COVID-19/genética , Mutação com Ganho de Função , Interferon-alfa/genética , SARS-CoV-2/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
20.
Clinics (Sao Paulo) ; 78: 100303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37931529

RESUMO

OBJECTIVE: Immunotherapy has been proven to improve the prognosis of patients with advanced malignancy but has shown limited efficacy in patients with Colorectal Cancer (CRC). Increasing evidence suggests that butyrate, a bacterial metabolite, enhances the efficacy of cancer therapies by modulating immune responses. Here, the effect and the mechanism of butyrate on anti-PD-L1 therapy were investigated in CRC. METHODS: The expression of PD-L1 and STAT1, and the lysine acetylation of STAT1 in CRC cells were observed after treatment with butyrate (2, 5, and 10 mM) for 24h or butyrate (5 mM) for 8, 16, and 24h. Site-directed mutations of STAT1 (K410R or K413R) were introduced to determine the role of STAT1 acetylation in modulating PD-L1 expression. The effect of butyrate on the cytotoxicity of CD8+ T-cells against CRC cells with or without PD-L1 overexpression was explored in vitro and in vivo. RESULTS: Butyrate could suppress IFN-γ-induced PD-L1 up-regulation in CRC cells in a dose- and time-dependent way. Butyrate promoted the lysine acetylation of STAT1 to reduce STAT1 expression. Non-acetylated mutant STAT1 not only ameliorated butyrate-induced suppression of lysine acetylation and nuclear translocation of STAT1 but also blocked the effect of butyrate on PD-L1. Butyrate attenuated the IFN-γ-induced impairment of CD8+ T-cell cytotoxicity against CRC cells. Meanwhile, butyrate suppressed CRC tumor growth by enhancing CD8+ T-cell infiltration. However, directly overexpressing PD-L1 in CRC cells could abolish the effect of butyrate. CONCLUSION: Butyrate strengthens the immune response to CRC cells by suppressing PD-L1 expression via acetylation of STAT1.


Assuntos
Antígeno B7-H1 , Neoplasias Colorretais , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Butiratos/farmacologia , Butiratos/metabolismo , Lisina/metabolismo , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Fator de Transcrição STAT1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA