RESUMO
Rhizobial phosphatidylcholine (PC) is thought to be a critical phospholipid for the symbiotic relationship between rhizobia and legume host plants. A PC-deficient mutant of Sinorhizobium meliloti overproduces succinoglycan, is unable to swim, and lacks the ability to form nodules on alfalfa (Medicago sativa) host roots. Suppressor mutants had been obtained which did not overproduce succinoglycan and regained the ability to swim. Previously, we showed that point mutations leading to altered ExoS proteins can reverse the succinoglycan and swimming phenotypes of a PC-deficient mutant. Here, we report that other point mutations leading to altered ExoS, ChvI, FabA, or RpoH1 proteins also revert the succinoglycan and swimming phenotypes of PC-deficient mutants. Notably, the suppressor mutants also restore the ability to form nodule organs on alfalfa roots. However, nodules generated by these suppressor mutants express only low levels of an early nodulin, do not induce leghemoglobin transcript accumulation, thus remain white, and are unable to fix nitrogen. Among these suppressor mutants, we detected a reduced function mutant of the 3-hydoxydecanoyl-acyl carrier protein dehydratase FabA that produces reduced amounts of unsaturated and increased amounts of shorter chain fatty acids. This alteration of fatty acid composition probably affects lipid packing thereby partially compensating for the previous loss of PC and contributing to the restoration of membrane homeostasis.
Assuntos
Ácidos Graxos , Medicago sativa , Fosfatidilcolinas , Nodulação , Sinorhizobium meliloti , Simbiose , Sinorhizobium meliloti/fisiologia , Sinorhizobium meliloti/genética , Medicago sativa/microbiologia , Medicago sativa/genética , Nodulação/genética , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Mutação , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/biossíntese , Fixação de NitrogênioRESUMO
The genome of Azospirillum brasilense encodes five RpoH sigma factors: two OxyR transcription regulators and three catalases. The aim of this study was to understand the role they play during oxidative stress and their regulatory interconnection. Out of the 5 paralogs of RpoH present in A. brasilense, inactivation of only rpoH1 renders A. brasilense heat sensitive. While transcript levels of rpoH1 were elevated by heat stress, those of rpoH3 and rpoH5 were upregulated by H2O2 Catalase activity was upregulated in A. brasilense and its rpoH::km mutants in response to H2O2 except in the case of the rpoH5::km mutant, suggesting a role for RpoH5 in regulating inducible catalase. Transcriptional analysis of the katN, katAI, and katAII genes revealed that the expression of katN and katAII was severely compromised in the rpoH3::km and rpoH5::km mutants, respectively. Regulation of katN and katAII by RpoH3 and RpoH5, respectively, was further confirmed in an Escherichia coli two-plasmid system. Regulation of katAII by OxyR2 was evident by a drastic reduction in growth, KatAII activity, and katAII::lacZ expression in an oxyR2::km mutant. This study reports the involvement of RpoH3 and RpoH5 sigma factors in regulating oxidative stress response in alphaproteobacteria. We also report the regulation of an inducible catalase by a cascade of alternative sigma factors and an OxyR. Out of the three catalases in A. brasilense, those corresponding to katN and katAII are regulated by RpoH3 and RpoH5, respectively. The expression of katAII is regulated by a cascade of RpoE1âRpoH5 and OxyR2.IMPORTANCEIn silico analysis of the A. brasilense genome showed the presence of multiple paralogs of genes involved in oxidative stress response, which included 2 OxyR transcription regulators and 3 catalases. So far, Deinococcus radiodurans and Vibrio cholerae are known to harbor two paralogs of OxyR, and Sinorhizobium meliloti harbors three catalases. We do not yet know how the expression of multiple catalases is regulated in any bacterium. Here we show the role of multiple RpoH sigma factors and OxyR in regulating the expression of multiple catalases in A. brasilense Sp7. Our work gives a glimpse of systems biology of A. brasilense used for responding to oxidative stress.
Assuntos
Azospirillum brasilense/enzimologia , Catalase/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Proteínas Repressoras/metabolismo , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Catalase/metabolismo , Proteínas de Choque Térmico/genética , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Fator sigma/genética , Fatores de Transcrição/genéticaRESUMO
Salmonella enterica can cause intestinal or systemic infections in humans and animals mainly by the presence of pathogenicity islands SPI-1 and SPI-2, containing 39 and 44 genes, respectively. The AraC-like regulator HilD positively controls the expression of the SPI-1 genes, as well as many other Salmonella virulence genes including those located in SPI-2. A previous report indicates that the two-component system CpxR/A regulates the SPI-1 genes: the absence of the sensor kinase CpxA, but not the absence of its cognate response regulator CpxR, reduces their expression. The presence and absence of cell envelope stress activates kinase and phosphatase activities of CpxA, respectively, which in turn controls the level of phosphorylated CpxR (CpxR-P). In this work, we further define the mechanism for the CpxR/A-mediated regulation of SPI-1 genes. The negative effect exerted by the absence of CpxA on the expression of SPI-1 genes was counteracted by the absence of CpxR or by the absence of the two enzymes, AckA and Pta, which render acetyl-phosphate that phosphorylates CpxR. Furthermore, overexpression of the lipoprotein NlpE, which activates CpxA kinase activity on CpxR, or overexpression of CpxR, repressed the expression of SPI-1 genes. Thus, our results provide several lines of evidence strongly supporting that the absence of CpxA leads to the phosphorylation of CpxR via the AckA/Pta enzymes, which represses both the SPI-1 and SPI-2 genes. Additionally, we show that in the absence of the Lon protease, which degrades HilD, the CpxR-P-mediated repression of the SPI-1 genes is mostly lost; moreover, we demonstrate that CpxR-P negatively affects the stability of HilD and thus decreases the expression of HilD-target genes, such as hilD itself and hilA, located in SPI-1. Our data further expand the insight on the different regulatory pathways for gene expression involving CpxR/A and on the complex regulatory network governing virulence in Salmonella.