Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 325: 138402, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36921776

RESUMO

Anaerobic digestion (AD) is a physio-biochemical process widely used for treating industrial or municipal wastewater with concomitant methane production. Several technologies have been tested to improve AD's efficiency, like pretreatments and co-digestion, among others. Recently the imposition of a low-magnitude electric field (LMEF) has been applied at the AD to improve methane yield. Despite the positive results of imputing an electric field, many gaps are not understood yet. Therefore, this review focuses on the biochemical aspects of AD and electric field for a better understanding of the effect of the LMEF on the metabolisms of the AD during wastewater treatment and its application in methane production enhancement.


Assuntos
Esgotos , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Metano
2.
Biochem J ; 478(14): 2775-2788, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34297042

RESUMO

Plants are surrounded by a vast diversity of microorganisms. Limiting pathogenic microorganisms is crucial for plant survival. On the other hand, the interaction of plants with beneficial microorganisms promotes their growth or allows them to overcome nutrient deficiencies. Balancing the number and nature of these interactions is crucial for plant growth and development, and thus, for crop productivity in agriculture. Plants use sophisticated mechanisms to recognize pathogenic and beneficial microorganisms and genetic programs related to immunity or symbiosis. Although most research has focused on characterizing changes in the transcriptome during plant-microbe interactions, the application of techniques such as Translating Ribosome Affinity Purification (TRAP) and Ribosome profiling allowed examining the dynamic association of RNAs to the translational machinery, highlighting the importance of the translational level of control of gene expression in both pathogenic and beneficial interactions. These studies revealed that the transcriptional and the translational responses are not always correlated, and that translational control operates at cell-specific level. In addition, translational control is governed by cis-elements present in the 5'mRNA leader of regulated mRNAs, e.g. upstream open reading frames (uORFs) and sequence-specific motifs. In this review, we summarize and discuss the recent advances made in the field of translational control during pathogenic and beneficial plant-microbe interactions.


Assuntos
Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas/genética , Biossíntese de Proteínas , Bactérias/genética , Bactérias/metabolismo , Bactérias/patogenicidade , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Simbiose/genética , Virulência/genética
3.
Bio Protoc ; 11(4): e3918, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33732805

RESUMO

Exosomes and other extracellular vesicles (EVs) are considered the main vehicles transporting RNAs in extracellular samples, including human bodily fluids. However, a major proportion of extracellular RNAs (exRNAs) do not copurify with EVs and remain in ultracentrifugation supernatants of cell-conditioned medium or blood serum. We have observed that nonvesicular exRNA profiles are highly biased toward those RNAs with intrinsic resistance to extracellular ribonucleases. These highly resistant exRNAs are interesting from a biomarker point of view, but are not representative of the actual bulk of RNAs released to the extracellular space. In order to understand exRNA dynamics and capture both stable and unstable RNAs, we developed a method based on size-exclusion chromatography (SEC) fractionation of RNase inhibitor (RI)-treated cell-conditioned medium (RI-SEC-seq). This method has allowed us to identify and study extracellular ribosomes and tRNAs, and offers a dynamical view of the extracellular RNAome which can impact biomarker discovery in the near future. Graphical abstract: Overview of the RI-SEC-seq protocol: sequencing of size-exclusion chromatography fractions from nonvesicular extracellular samples treated or not with RNase inhibitors (+/- RI).

4.
J Dent Res ; 97(1): 33-40, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29053389

RESUMO

A valuable approach to understand how individual and population genetic differences can predispose to disease is to assess the impact of genetic variants on cellular functions (e.g., gene expression) of cell and tissue types related to pathological states. To understand the genetic basis of nonsyndromic cleft lip with or without cleft palate (NSCL/P) susceptibility, a complex and highly prevalent congenital malformation, we searched for genetic variants with a regulatory role in a disease-related tissue, the lip muscle (orbicularis oris muscle [OOM]), of affected individuals. From 46 OOM samples, which are frequently discarded during routine corrective surgeries on patients with orofacial clefts, we derived mesenchymal stem cells and correlated the individual genetic variants with gene expression from these cultured cells. Through this strategy, we detected significant cis-eQTLs (i.e., DNA variants affecting gene expression) and selected a few candidates to conduct an association study in a large Brazilian cohort (624 patients and 668 controls). This resulted in the discovery of a novel susceptibility locus for NSCL/P, rs1063588, the best eQTL for the MRPL53 gene, where evidence for association was mostly driven by the Native American ancestry component of our Brazilian sample. MRPL53 (2p13.1) encodes a 39S protein subunit of mitochondrial ribosomes and interacts with MYC, a transcription factor required for normal facial morphogenesis. Our study illustrates not only the importance of sampling admixed populations but also the relevance of measuring the functional effects of genetic variants over gene expression to dissect the complexity of disease phenotypes.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Proteínas Ribossômicas/genética , Adolescente , Criança , Pré-Escolar , Feminino , Genes/genética , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Masculino , Ribossomos Mitocondriais/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Adulto Jovem
5.
Dev Neurobiol ; 74(3): 292-302, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23997031

RESUMO

The existence of RNA in axons has been a matter of dispute for decades. Evidence for RNA and ribosomes has now accumulated to a point at which it is difficult to question, much of the disputes turned to the origin of these axonal RNAs. In this review, we focus on studies addressing the origin of axonal RNAs and ribosomes. The neuronal soma as the source of most axonal RNAs has been demonstrated and is indisputable. However, the surrounding glial cells may be a supplemental source of axonal RNAs, a matter scarcely investigated in the literature. Here, we review the few papers that have demonstrated that glial-to-axon RNA transfer is not only feasible, but likely. We describe this process in both invertebrate axons and vertebrate axons. Schwann cell to axon ribosomes transfer was conclusively demonstrated (Court et al. [2008]: J. Neurosci 28:11024-11029; Court et al. [2011]: Glia 59:1529-1539). However, mRNA transfer still remains to be demonstrated in a conclusive way. The intercellular transport of mRNA has interesting implications, particularly with respect to the integration of glial and axonal function. This evolving field is likely to impact our understanding of the cell biology of the axon in both normal and pathological conditions. Most importantly, if the synthesis of proteins in the axon can be controlled by interacting glia, the possibilities for clinical interventions in injury and neurodegeneration are greatly increased.


Assuntos
Axônios/metabolismo , Neuroglia/metabolismo , Transporte de RNA , RNA/metabolismo , Animais , Humanos , Miosina Tipo V/metabolismo , Regeneração Nervosa , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA