Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 10(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36554060

RESUMO

(1) Background: The dynamics of hand tremors involve nonrandom and short-term motor patterns (STMPs). This study aimed to (i) identify STMPs in Parkinson's disease (PD) and physiological resting tremor and (ii) characterize STMPs by amplitude, persistence, and regularity. (2) Methods: This study included healthy (N = 12, 60.1 ± 5.9 years old) and PD (N = 14, 65 ± 11.54 years old) participants. The signals were collected using a triaxial gyroscope on the dorsal side of the hand during a resting condition. Data were preprocessed and seven features were extracted from each 1 s window with 50% overlap. The STMPs were identified using the clustering technique k-means applied to the data in the two-dimensional space given by t-Distributed Stochastic Neighbor Embedding (t-SNE). The frequency, transition probability, and duration of the STMPs for each group were assessed. All STMP features were averaged across groups. (3) Results: Three STMPs were identified in tremor signals (p < 0.05). STMP 1 was prevalent in the healthy control (HC) subjects, STMP 2 in both groups, and STMP3 in PD. Only the coefficient of variation and complexity differed significantly between groups. (4) Conclusion: These results can help professionals characterize and evaluate tremor severity and treatment efficacy.

2.
Comput Biol Med ; 140: 105059, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34847385

RESUMO

One of the most characteristic signs of Parkinson's disease (PD) is hand tremor. The MDS-UPDRS scale evaluates different aspects of the disease. The tremor score is a part of the MDS-UPDRS scale, which provides instructions for rating it, by observation, with an integer from 0 to 4. Nevertheless, this form of assessment is subjective and dependent on visual acuity, clinical judgment, and even the mood of the individual examiner. On the other hand, in many cases, existing computational models proposed to resolve the disadvantages of the MDS-UPDRS scale may have uncertainty in differentiating a category of a slight Parkinson tremor from voluntary movements. In this study, 554 measurements from Parkinson's patients, and 60 measurements from healthy subjects, were recorded with inertial sensors placed on the back of each hand. Five biomechanical indicators characterised the hand tremor. With these indicators, the three fuzzy inference models proposed can differentiate, in the first instance, the presence of postural or resting tremor from a normal movement of the hand, and if detected, to determine its severity. The fuzzy inference models allowed following the criteria of the MDS-UPDRS scale, providing an evaluation with an accuracy of two decimal digits and which, due to its simplicity, can be implemented in clinical environments. The assessments of three experts validated the computer model.

3.
Biomed Eng Online ; 20(1): 50, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022895

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurological disease that affects the motor system. The associated motor symptoms are muscle rigidity or stiffness, bradykinesia, tremors, and gait disturbances. The correct diagnosis, especially in the initial stages, is fundamental to the life quality of the individual with PD. However, the methods used for diagnosis of PD are still based on subjective criteria. As a result, the objective of this study is the proposal of a method for the discrimination of individuals with PD (in the initial stages of the disease) from healthy groups, based on the inertial sensor recordings. METHODS: A total of 27 participants were selected, 15 individuals previously diagnosed with PD and 12 healthy individuals. The data collection was performed using inertial sensors (positioned on the back of the hand and on the back of the forearm). Different numbers of features were used to compare the values of sensitivity, specificity, precision, and accuracy of the classifiers. For group classification, 4 classifiers were used and compared, those being [Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Naive Bayes (NB)]. RESULTS: When all individuals with PD were analyzed, the best performance for sensitivity and accuracy (0.875 and 0.800, respectively) was found in the SVM classifier, fed with 20% and 10% of the features, respectively, while the best performance for specificity and precision (0.933 and 0.917, respectively) was associated with the RF classifier fed with 20% of all the features. When only individuals with PD and score 1 on the Hoehn and Yahr scale (HY) were analyzed, the best performances for sensitivity, precision and accuracy (0.933, 0.778 and 0.848, respectively) were from the SVM classifier, fed with 40% of all features, and the best result for precision (0.800) was connected to the NB classifier, fed with 20% of all features. CONCLUSION: Through an analysis of all individuals in this study with PD, the best classifier for the detection of PD (sensitivity) was the SVM fed with 20% of the features and the best classifier for ruling out PD (specificity) was the RF classifier fed with 20% of the features. When analyzing individuals with PD and score HY = 1, the SVM classifier was superior across the sensitivity, precision, and accuracy, and the NB classifier was superior in the specificity. The obtained result indicates that objective methods can be applied to help in the evaluation of PD.


Assuntos
Doença de Parkinson , Teorema de Bayes , Humanos , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA