Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Bioresour Technol ; 344(Pt B): 126313, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34798259

RESUMO

The Isopropanol-Butanol-Ethanol productivity by solventogenic clostridia can increase when cells are immobilized on low-cost, renewable fibrous materials; however, butanol inhibition imposes the need for dilute sugar solutions (less than40 g/L). To alleviate this problem, the in-situ vacuum product recovery technique was applied to recover IBE in repeated-batch cultivation of Clostridium beijerinckii DSM 6423 immobilized on sugarcane bagasse. Five repeated batch cycles were conducted in a 7-L bioreactor containing P2 medium (∼60 g/L glucose) and bagasse packed in 3D-printed concentric annular baskets. In three cycles, glucose was consumed by 86% on average, the IBE productivity was 0.35 g/L∙h or 30% and 17% higher relative to free- and immobilized (without vacuum)-cell cultures. Notably, the product stream contained 45 g/L IBE. However, the fermentation was unsatisfactory in two cycles. Finally, by inserting a fibrous bed with hollow annuli in a vacuum fermentation, this work introduces the concept of an internal-loop boiling-driven fibrous-bed bioreactor.


Assuntos
2-Propanol , Butanóis , Reatores Biológicos , Etanol , Fermentação , Vácuo
2.
Bioresour Technol ; 321: 124504, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33307480

RESUMO

To enable the production of butanol with undiluted, non-detoxified sugarcane bagasse hemicellulose hydrolysates, this study developed a three-staged repeated-batch immobilized cell fermentation in which the efficiency of a 3D-printed nylon carrier to passively immobilize Clostridium saccharoperbutylacetonicum DSM 14923 was compared with sugarcane bagasse. The first stage consisted of sugarcane molasses fermentation, and in the second stage, non-detoxified sugarcane bagasse hemicellulose hydrolysates (SBHH) was pulse-fed to sugarcane molasses fermentation. In the next four batches, immobilized cells were fed with undiluted SBHH supplemented with molasses, and SBHH-derived xylose accounted for approximately 50% of the sugars. Bagasse was a superior carrier, and the average xylose utilization (33%) was significantly higher than the treatment with the 3D-printed carrier (16%). Notably, bagasse allowed for 43% of the butanol to be SBHH-derived. Overall, cell immobilization on lignocellulosic materials can be an efficient strategy to produce butanol from repeated-batch fermentation of non-detoxified hemicellulose hydrolysates.


Assuntos
Saccharum , Butanóis , Células Imobilizadas , Celulose , Clostridium , Fermentação , Hidrólise , Polissacarídeos
3.
Electron. j. biotechnol ; Electron. j. biotechnol;46: 55-64, jul. 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1223246

RESUMO

BACKGROUND: Ethanol concentration (PE), ethanol productivity (QP) and sugar consumption (SC) are important values in industrial ethanol production. In this study, initial sugar and nitrogen (urea) concentrations in sweet sorghum stem juice (SSJ) were optimized for high PE (≥10%, v/v), QP, (≥2.5 g/L·h) and SC (≥90%) by Saccharomyces cerevisiae SSJKKU01. Then, repeated-batch fermentations under normal gravity (NG) and high gravity (HG) conditions were studied. RESULTS: The initial sugar at 208 g/L and urea at 2.75 g/L were the optimum values to meet the criteria. At the initial yeast cell concentration of ~1 × 108 cells/mL, the PE, QP and SC were 97.06 g/L, 3.24 g/L·h and 95.43%, respectively. Repeated-batch fermentations showed that the ethanol production efficiency of eight successive cycles with and without aeration were not significantly different when the initial sugar of cycles 2 to 8 was under NG conditions (~140 g/L). Positive effects of aeration were observed when the initial sugar from cycle 2 was under HG conditions (180­200 g/L). The PE and QP under no aeration were consecutively lower from cycle 1 to cycle 6. Additionally, aeration affected ergosterol formation in yeast cell membrane at high ethanol concentrations, whereas trehalose content under all conditions was not different. CONCLUSION: Initial sugar, sufficient nitrogen and appropriated aeration are necessary for promoting yeast growth and ethanol fermentation. The SSJ was successfully used as an ethanol production medium for a high level of ethanol production. Aeration was not essential for repeated-batch fermentation under NG conditions, but it was beneficial under HG conditions.


Assuntos
Saccharomyces cerevisiae/metabolismo , Sorghum/química , Etanol/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ureia , Leveduras/crescimento & desenvolvimento , Aeração , Sorghum/microbiologia , Etanol/análise , Açúcares , Sucos , Fermentação , Gravitação , Nitrogênio
4.
Braz. arch. biol. technol ; Braz. arch. biol. technol;58(4): 636-642, Jul-Aug/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-753945

RESUMO

The aim of this work was to optimize the growth conditions and continuous production of the enzyme using free and immobilized cells of inulinase by Penicillium funiculosum. The highest yield of enzyme (163.5U/mL) was obtained when the culture was incubated at 27oC and 200 rpm for 96h in a fermentation medium containing both inulin and peptone as sole carbon and nitrogen source, respectively. When the cells of the P. funiculosum were immobilized on different carriers, especially linen fibers, their production ability was successfully maintained for seven successive batches. When the fermentation was carried out using inulin juice prepared from Jerusalem artichoke tubers (in place of pure inulin), inulinase production could be sustained till the second cultivation batch of the P. funiculosum immobilized on linen fibers, yielding 122 U/mL enzyme. Results proved the feasibility of using crude inulin juice as a simple and economic carbon source for the production of inulinase.

5.
Eng. sanit. ambient ; Eng. sanit. ambient;18(4): 371-380, Oct-Dec/2013. tab, graf
Artigo em Português | LILACS | ID: lil-695999

RESUMO

Indústrias de laticínios contêm elevada concentração de matéria orgânica que podem causar poluição. Este trabalho propôs estudar a remoção de matéria orgânica e de nutrientes de um efluente sintético de laticínio, disposto em reatores em bateladas repetidas inoculados com Aspergillus niger AN400. O sistema foi composto por reatores com diferentes configurações e, para cada tipo de montagem, variou-se o material-suporte. O estudo foi realizado em quatro ciclos de cinco dias, com retiradas diárias de alíquotas. A análise dos resultados mostrou eficiência de remoção de demanda química de oxigênio com picos de até 71,7%, concluindo-se que a tecnologia mostrou-se viável na remoção de matéria orgânica. Em relação aos nutrientes, o sistema pôde remover satisfatoriamente nitrato; contudo, para remoção de amônia, não se apresentou promissor.


Dairy industries contain high concentration of organic matter that may cause pollution. This study proposed to study the removal of organic matter and nutrients from a synthetic dairy effluent, arranged in repeated batch reactors inoculated with Aspergillus niger AN400. The system was composed of reactors with different configurations and, for each type of assembly, the support material was varied. The study was conducted in four cycles of five days, with daily withdrawals of portions. The results showed efficiency of removal of chemical oxygen demand with peaks of up to 71.7%. One might conclude that the technology was feasible in the removal of organic matter. For nutrients, the system could successfully remove nitrate; however, for removal of ammonia, it was not promising.

6.
Rev. colomb. biotecnol ; 13(1): 8-15, jul. 2011. ilus, graf, tab
Artigo em Espanhol | LILACS | ID: lil-600568

RESUMO

Las células inmovilizadas tienen aplicación potencial en la producción de biocombustibles posibilitando la reutilización de biomasa, el empleo de diversas configuraciones de reactores y sistemas de cultivo, el manejo de altas densidades celulares alcanzando altas productividades volumétricas, y la simplificación de operaciones de procesamiento de salida. El objetivo del presente estudio fue evaluar la influencia del diámetro de las perlas y la densidad celular en la producción de etanol con Saccharomyces uvarum inmovilizada en alginato al 2% (p/v). Para ello se evaluaron tres diámetros de perlas de 2, 2,5 y 3 mm. Las células inmovilizadas fueron cultivadas en medio con 12% (p/v) de glucosa en biorreactores de columna sin agitación a 28 ºC, y se operaron cuatro lotes consecutivos de 48 horas cada uno. En cada lote se cuantificó el consumo de glucosa y se determinó la cantidad de etanol producido. Los rendimientos máximos de etanol para las esferas de 2, 2,5 y 3 mm de diámetro fueron 81, 83 y 97% del rendimiento teórico. La máxima productividad volumétrica de etanol fue 1,2 g/L-1/h-1 con un consumo de glucosa de 99,8% al término del lote, correspondiente a las columnas con perlas de 3 mm y con una producción de 0,017 g de etanol por esfera. La producción de etanol acumulada en cada sistema fue 178, 189 y 200 g/L-1 para 2, 2,5 y 3 mm respectivamente, encontrándose una relación directa con el diámetro de perla e inversa respecto a la densidad celular. Los rendimientos de etanol obtenidos son superiores a los reportados para la misma especie.


Immobilized cells have a potential use in biofuel production. They also allow re-using biomass, using diverse reactor configurations and culture systems, handling high cell densities to obtain high volumetric productivities and to simplify the downstream processing. The purpose of this work was to evaluate the influence of bead diameter and cell density on ethanol production using immobilized Saccharomyces uvarum in 2% (w/v) alginate. For that, three bead diameters (2, 2.5 and 3 mm) were evaluated. Immobilized cells were cultured on a 12% (w/v) glucose medium in column bioreactors without agitation at 28 °C for four 48 h–repeated batches. For each batch, both glucose consumption and ethanol produced were measured. Maximum yields for 2, 2.5 and 3 mm bead diameters were 81, 83 and 97% of theoretical yield. Maximum volumetric productivity of ethanol was 1.2 g/L-1/h-1 with 99.8% glucose consumption at the end of the batch, corresponding to the 3 mm bead diameter and the ethanol production per bead was 0.017 g. Accumulated ethanol production for each system was 178, 189 and 200 g/L-1 for 2, 2.5 y 3 mm bead diameter, respectively, being this directly related to bead diameter and inversely related to cell density. Ethanol yields were higher than those reported for the same species.


Assuntos
Etanol/isolamento & purificação , Etanol/análise , Etanol/síntese química , Saccharomyces/isolamento & purificação , Saccharomyces/enzimologia , Saccharomyces/química
7.
Electron. j. biotechnol ; Electron. j. biotechnol;14(1): 4-5, Jan. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-591922

RESUMO

Batch ethanol fermentations from sweet sorghum juice by Saccharomyces cerevisiae NP 01 were carried out in a 500 ml air-locked Erlenmeyer flask under very high gravity (VHG) and static conditions. The maximum ethanol production efficiency was obtained when 9 g l-1 of yeast extract was supplemented to the juice. The ethanol concentration (P), productivity (Qp) and yield (Yp/s) were 120.24 +/- 1.35 g l-1, 3.01 +/- 0.08 g l-1 h-1 and 0.49 +/- 0.01, respectively. Scale up ethanol fermentation in a 5-litre bioreactor at an agitation rate of 100 rev min-1 revealed that P, Qp and Yp/s were 139.51 +/- 0.11 g l-1, 3.49 +/- 0.00 g l-1 h-1 and 0.49 +/- 0.01, respectively, whereas lower P (119.53 +/- 0.20 g l-1) and Qp (2.13 +/- 0.01 g l-1 h-1) were obtained in a 50-litre bioreactor. In the repeated-batch fermentation in the 5-litre bioreactor with fill and drain volume of 50 percent of the working volume, lower P and Qp were observed in the subsequent batches. P in batch 2 to 8 ranged from 103.37 +/- 0.28 to 109.53 +/- 1.06 g l-1.


Assuntos
Etanol/metabolismo , Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Fermentação , Fermentação/fisiologia , Preparações de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA