Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
1.
Data Brief ; 55: 110736, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39100784

RESUMO

This paper describes a dataset of convective systems (CSs) associated with hailstorms over Brazil tracked using GOES-16 Advanced Baseline Imager (ABI) measurements and the Tracking and Analysis of Thunderstorms (TATHU) tool. The dataset spans from June 5, 2018, to September 30, 2023, providing five-year period of storm activity. CSs were detected and tracked using the ABI's clean IR window brightness temperature at 10.3 µm, projected on a 2 km x 2 km Lat-Lon WGS84 grid. Systems were identified using a brightness temperature (BT) threshold of 235 K, conducive to detecting convective clusters with larger area and excluding smaller or non-convective cells such as groups of thin Cirrus clouds. Each detected CS was treated as an object, containing geographic boundaries and raster statistics such as BT's mean, minimum, standard deviation, and count of data points within the CS polygon, which serves as proxy for size estimates. The life cycle of each system was tracked based on a 10 % overlap area criterion, ensuring continuity, unless disrupted by dissociative or associative events. Then, the tracked CSs were filtered for intersections in space and time with verified ground reports of hail, from the Prevots group. The matches were then exported to a database with SpatiaLite enabled data format to facilitate spatial data queries and analyses. This database is structured to support advanced research in severe weather events, in particular hailfall. This setting allows for extensive temporal and spatial analyses of convective systems, making it useful for meteorologists, climate scientists, and researchers in related fields . The inclusion of detailed tracking information and raster statistics offers potential for diverse applications, including climate model validation, weather prediction enhancements, and studies on the climatological impact of severe weather phenomena in Brazil.

2.
Sci Total Environ ; 949: 175026, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097022

RESUMO

Tailings dams' breaks are environmental disasters with direct and intense degradation of soil. This study analyzed the impacts of B1 tailings dam rupture occurred in the Ribeirão Ferro-Carvão watershed (Brumadinho, Brazil) in January 25, 2019. Soil organic carbon (SOC) approached environmental degradation. The analysis encompassed wetlands (high-SOC pools) located in the so-called Zones of Decreasing Destructive Capacity (DCZ5 to DCZ1) defined along the Ferro-Carvão's stream bed and banks after the disaster. Remote sensed water indices were extracted from Landsat 8 and Sentinel-2 satellite images spanning the 2017-2021 period and used to distinguish the wetlands from other land covers. The annual SOC was extracted from the MapBiomas repository inside and outside the DCZs in the same period, and assessed in the field in 2023. Before the dam collapse, the DCZs maintained stable levels of SOC, while afterwards they decreased substantially reaching minimum values in 2023. The reductions were abrupt: for example, in the DCZ3 the decrease was from 51.28 ton/ha in 2017 to 4.19 ton/ha in 2023. Besides, the SOC increased from DCZs located near to DCZs located farther from the dam site, a result attributed to differences in the percentages of clay and silt in the tailings, which also increased in the same direction. The Ferro-Carvão stream watershed as whole also experienced a slight reduction in the average SOC levels after the dam collapse, from nearly 43 ton/ha in 2017 to 38 ton/ha in 2021. This result was attributed to land use changes related with the management of tailings, namely opening of accesses to remove them from the stream valley, creation of spaces for temporary deposits, among others. Overall, the study highlighted the footprints of tailings dams' accidents on SOC, which affect not only the areas impacted with the mudflow but systemically the surrounding watersheds. This is noteworthy.

3.
Data Brief ; 55: 110679, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39044903

RESUMO

Digital image datasets for Precision Agriculture (PA) still need to be available. Many problems in this field of science have been studied to find solutions, such as detecting weeds, counting fruits and trees, and detecting diseases and pests, among others. One of the main fields of research in PA is detecting different crop types with aerial images. Crop detection is vital in PA to establish crop inventories, planting areas, and crop yields and to have information available for food markets and public entities that provide technical help to small farmers. This work proposes public access to a digital image dataset for detecting green onion and foliage flower crops located in the rural area of Medellín City - Colombia. This dataset consists of 245 images with their respective labels: green onion (Allium fistulosum), foliage flowers (Solidago Canadensis and Aster divaricatus), and non-crop areas prepared for planting. A total of 4315 instances were obtained, which were divided into subsets for training, validation, and testing. The classes in the images were labeled with the polygon method, which allows training machine learning algorithms for detection using bounding boxes or segmentation in the COCO format.

4.
Int J Health Geogr ; 23(1): 18, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972982

RESUMO

BACKGROUND: The spread of mosquito-transmitted diseases such as dengue is a major public health issue worldwide. The Aedes aegypti mosquito, a primary vector for dengue, thrives in urban environments and breeds mainly in artificial or natural water containers. While the relationship between urban landscapes and potential breeding sites remains poorly understood, such a knowledge could help mitigate the risks associated with these diseases. This study aimed to analyze the relationships between urban landscape characteristics and potential breeding site abundance and type in cities of French Guiana (South America), and to evaluate the potential of such variables to be used in predictive models. METHODS: We use Multifactorial Analysis to explore the relationship between urban landscape characteristics derived from very high resolution satellite imagery, and potential breeding sites recorded from in-situ surveys. We then applied Random Forest models with different sets of urban variables to predict the number of potential breeding sites where entomological data are not available. RESULTS: Landscape analyses applied to satellite images showed that urban types can be clearly identified using texture indices. The Multiple Factor Analysis helped identify variables related to the distribution of potential breeding sites, such as buildings class area, landscape shape index, building number, and the first component of texture indices. Models predicting the number of potential breeding sites using the entire dataset provided an R² of 0.90, possibly influenced by overfitting, but allowing the prediction over all the study sites. Predictions of potential breeding sites varied highly depending on their type, with better results on breeding sites types commonly found in urban landscapes, such as containers of less than 200 L, large volumes and barrels. The study also outlined the limitation offered by the entomological data, whose sampling was not specifically designed for this study. Model outputs could be used as input to a mosquito dynamics model when no accurate field data are available. CONCLUSION: This study offers a first use of routinely collected data on potential breeding sites in a research study. It highlights the potential benefits of including satellite-based characterizations of the urban environment to improve vector control strategies.


Assuntos
Aedes , Cidades , Imagens de Satélites , Animais , Imagens de Satélites/métodos , Mosquitos Vetores , Guiana Francesa/epidemiologia , Dengue/epidemiologia , Dengue/transmissão , Dengue/prevenção & controle , Humanos , Cruzamento/métodos
5.
Int J Biometeorol ; 68(10): 2069-2082, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38976066

RESUMO

Several remote sensing indices have been used to monitor droughts, mainly in semi-arid regions with limited coverage by meteorological stations. The objective of this study was to estimate and monitor agricultural drought conditions in the Jequitinhonha Valley region, located in the Brazilian biomes of the Cerrado and Atlantic Forest, from 2001 to 2021, using vegetation indices and the meteorological drought index from remote sensing data. Linear regression was applied to analyze drought trends and Pearson's correlation coefficient was applied to evaluate the relationship between vegetation indices and climatic conditions in agricultural areas using the Standardized Precipitation Index. The results revealed divergences in the occurrences of regional droughts, predominantly covering mild to moderate drought conditions. Analysis spatial of drought trends revealed a decreasing pattern, indicating an increase in drought in the Middle and Low Jequitinhonha sub-regions. On the other hand, a reduction in drought was observed in the High Jequitinhonha region. Notably, the Vegetation Condition Index demonstrated the most robust correlation with the Standardized Precipitation Index, with R values ​​greater than 0.5 in all subregions of the study area. This index showed a strong association with precipitation, proving its suitability for monitoring agricultural drought in heterogeneous areas and with different climatic attributes. The use of remote sensing technology made it possible to detect regional variations in the spatio-temporal patterns of drought in the Jequitinhonha Valley. This vision helps in the implementation of personalized strategies and public policies, taking into account the particularities of each area, in order to mitigate the negative impacts of drought on agricultural activities in the region.

6.
PeerJ ; 12: e17563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948225

RESUMO

Changes in land cover directly affect biodiversity. Here, we assessed land-cover change in Cuba in the past 35 years and analyzed how this change may affect the distribution of Omphalea plants and Urania boisduvalii moths. We analyzed the vegetation cover of the Cuban archipelago for 1985 and 2020. We used Google Earth Engine to classify two satellite image compositions into seven cover types: forest and shrubs, mangrove, soil without vegetation cover, wetlands, pine forest, agriculture, and water bodies. We considered four different areas for quantifications of land-cover change: (1) Cuban archipelago, (2) protected areas, (3) areas of potential distribution of Omphalea, and (4) areas of potential distribution of the plant within the protected areas. We found that "forest and shrubs", which is cover type in which Omphalea populations have been reported, has increased significantly in Cuba in the past 35 years, and that most of the gained forest and shrub areas were agricultural land in the past. This same pattern was observed in the areas of potential distribution of Omphalea; whereas almost all cover types were mostly stable inside the protected areas. The transformation of agricultural areas into forest and shrubs could represent an interesting opportunity for biodiversity conservation in Cuba. Other detailed studies about biodiversity composition in areas of forest and shrubs gain would greatly benefit our understanding of the value of such areas for conservation.


Assuntos
Agricultura , Biodiversidade , Conservação dos Recursos Naturais , Cuba , Animais , Mariposas/fisiologia , Florestas
7.
Environ Monit Assess ; 196(7): 633, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900342

RESUMO

The intensive global use of pesticides presents an escalating threat to human health, ecosystems, and water quality. To develop national and local environmental management strategies for mitigating pollution caused by pesticides, it is essential to understand the quantities, timing, and location of their application. This study aims to estimate the spatial distribution of pesticide use in an agricultural region of La Plata River basin in Uruguay. Estimates of pesticide use were made by surveying doses applied to each crop. This information was spatialized through identifying agricultural rotations using remote sensing techniques. The study identified the 60 major agricultural rotations in the region and mapped the use and application amount of the nine most significant active ingredients (glyphosate, 2,4-dichlorophenoxyacetic acid, flumioxazin, S-metolachlor, clethodim, flumetsulam, triflumuron, chlorantraniliprole, and fipronil). The results reveal that glyphosate is the most extensively used pesticide (53.5% of the area) and highest amount of use (> 1.44 kg/ha). Moreover, in 19% of the area, at least seven active ingredients are applied in crop rotations. This study marks the initial step in identifying rotations and estimating pesticide applications with high spatial resolution at a regional scale in agricultural regions of La Plata River basin. The results improve the understanding of pesticide spatial distribution based on data obtained from agronomists, technicians, and producers and provide a replicable methodological approach for other geographic and productive contexts. Generating baseline information is key to environmental management and decision making, towards the design of more robust monitoring systems and human exposure assessment.


Assuntos
Agricultura , Produtos Agrícolas , Monitoramento Ambiental , Praguicidas , Rios , Monitoramento Ambiental/métodos , Uruguai , Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise
8.
Heliyon ; 10(11): e31730, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841473

RESUMO

Identifying plantation lines in aerial images of agricultural landscapes is re-quired for many automatic farming processes. Deep learning-based networks are among the most prominent methods to learn such patterns and extract this type of information from diverse imagery conditions. However, even state-of-the-art methods may stumble in complex plantation patterns. Here, we propose a deep learning approach based on graphs to detect plantation lines in UAV-based RGB imagery, presenting a challenging scenario containing spaced plants. The first module of our method extracts a feature map throughout the backbone, which consists of the initial layers of the VGG16. This feature map is used as an input to the Knowledge Estimation Module (KEM), organized in three concatenated branches for detecting 1) the plant positions, 2) the plantation lines, and 3) the displacement vectors between the plants. A graph modeling is applied considering each plant position on the image as vertices, and edges are formed between two vertices (i.e. plants). Finally, the edge is classified as pertaining to a certain plantation line based on three probabilities (higher than 0.5): i) in visual features obtained from the backbone; ii) a chance that the edge pixels belong to a line, from the KEM step; and iii) an alignment of the displacement vectors with the edge, also from the KEM step. Experiments were conducted initially in corn plantations with different growth stages and patterns with aerial RGB imagery to present the advantages of adopting each module. We assessed the generalization capability in the other two cultures (orange and eucalyptus) datasets. The proposed method was compared against state-of-the-art deep learning methods and achieved superior performance with a significant margin considering all three datasets. This approach is useful in extracting lines with spaced plantation patterns and could be implemented in scenarios where plantation gaps occur, generating lines with few-to-no interruptions.

9.
Heliyon ; 10(9): e29688, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707301

RESUMO

Accurate assessment of evapotranspiration (ETa) and crop coefficient (Kc) is crucial for optimizing irrigation practices in water-scarce regions. While satellite-based surface energy balance models offer a promising solution, their application to sparse canopies like apple orchards requires specific validation. This study investigated the spatial and temporal dynamics of ETa and Kc in a drip-irrigated 'Pink Lady' apple orchard under Mediterranean conditions over three growing seasons (2012/13, 2013/14, 2014/15). The METRIC model, incorporating calibrated sub-models for leaf area index (LAI), surface roughness (Zom), and soil heat flux (G), was employed to estimate ETa and Kc. These estimates were validated against field-scale Eddy Covariance data. Results indicated that METRIC overpredicted Kc and ETa with errors less than 10 %. These findings highlight the potential of the calibrated METRIC model as a valuable decision-making tool for irrigation management in apple orchards.

10.
Environ Monit Assess ; 196(6): 574, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780747

RESUMO

Concerns about methane (CH4) emissions from rice, a staple sustaining over 3.5 billion people globally, are heightened due to its status as the second-largest contributor to greenhouse gases, driving climate change. Accurate quantification of CH4 emissions from rice fields is crucial for understanding gas concentrations. Leveraging technological advancements, we present a groundbreaking solution that integrates machine learning and remote sensing data, challenging traditional closed chamber methods. To achieve this, our methodology involves extensive data collection using drones equipped with a Micasense Altum camera and ground sensors, effectively reducing reliance on labor-intensive and costly field sampling. In this experimental project, our research delves into the intricate relationship between environmental variables, such as soil conditions and weather patterns, and CH4 emissions. We achieved remarkable results by utilizing unmanned aerial vehicles (UAV) and evaluating over 20 regression models, emphasizing an R2 value of 0.98 and 0.95 for the training and testing data, respectively. This outcome designates the random forest regressor as the most suitable model with superior predictive capabilities. Notably, phosphorus, GRVI median, and cumulative soil and water temperature emerged as the model's fittest variables for predicting these values. Our findings underscore an innovative, cost-effective, and efficient alternative for quantifying CH4 emissions, marking a significant advancement in the technology-driven approach to evaluating rice growth parameters and vegetation indices, providing valuable insights for advancing gas emissions studies in rice paddies.


Assuntos
Agricultura , Poluentes Atmosféricos , Monitoramento Ambiental , Metano , Oryza , Tecnologia de Sensoriamento Remoto , Metano/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Agricultura/métodos , Dispositivos Aéreos não Tripulados , Gases de Efeito Estufa/análise , Solo/química , Poluição do Ar/estatística & dados numéricos
11.
Data Brief ; 54: 110300, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38586147

RESUMO

Three F2-derived biparental doubled haploid (DH) maize populations were generated for genetic mapping of resistance to common rust. Each of the three populations has the same susceptible parent, but a different resistance donor parent. Population 1 and 3 consist of 320 lines each, population 2 consists of 260 lines. The DH lines were evaluated for their susceptibility to common rust in two years and with two replications in each year. For phenotyping, a visual score (VS) for susceptibility was assigned. Additionally, unmanned aerial vehicle (UAV) derived multispectral and thermal infrared data was recorded and combined in different vegetation indices ("remote sensing", RS). The DH lines were genotyped with the DarTseq method, to obtain data on single nucleotide polymorphisms (SNPs). After quality control, 9051 markers remained. Missing values were "imputed" by the empirical mean of the marker scores of the respective locus. We used the data for comparison of genome-wide association studies and genomic prediction when based on different phenotyping methods, that is either VS or RS data. The data may be interesting for reuse for instance for benchmarking genomic prediction models, for phytopathological studies addressing common rust, or for specifications of vegetation indices.

12.
Heliyon ; 10(5): e26819, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439847

RESUMO

Nitrogen is one of the essential nutrients for the production of agricultural crops, participating in a complex interaction among soil, plant and the atmosphere. Therefore, its monitoring is important both economically and environmentally. The aim of this work was to estimate the leaf nitrogen contents in sugarcane from hyperspectral reflectance data during different vegetative stages of the plant. The assessments were performed from an experiment designed in completely randomized blocks, with increasing nitrogen doses (0, 60, 120 and 180 kg ha-1). The acquisition of the spectral data occurred at different stages of crop development (67, 99, 144, 164, 200, 228, 255 and 313 days after cutting; DAC). In the laboratory, the hyperspectral responses of the leaves and the Leaf Nitrogen Contents (LNC) were obtained. The hyperspectral data and the LNC values were used to generate spectral models employing the technique of Partial Least Squares Regression (PLSR) Analysis, also with the calculation of the spectral bands of greatest relevance, by the Variable Importance in Projection (VIP). In general, the increase in LNC promoted a smaller reflectance in all wavelengths in the visible (400-680 nm). Acceptable models were obtained (R2 > 0.70 and RMSE <1.41 g kg-1), the most robust of which were those generated from spectra in the visible (400-680 nm) and red-edge (680-750 nm), with values of R2 > 0.81 and RMSE <1.24 g kg-1. An independent validation, leave-one-date-out cross validation (LOOCV), was performed using data from other collections, which confirmed the robustness and the possibility of LNC prediction in new data sets, derived, for instance, from samplings subsequent to the period of study.

13.
Sensors (Basel) ; 24(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38544194

RESUMO

A surface urban heat island (SUHI) is a phenomenon whereby temperatures in urban areas are significantly higher than that of surrounding rural and natural areas due to replacing natural and semi-natural areas with impervious surfaces. The phenomenon is evaluated through the SUHI intensity, which is the difference in temperatures between urban and non-urban areas. In this study, we assessed the spatial and temporal dynamics of SUHI in two urban areas of the French Guiana, namely Ile de Cayenne and Saint-Laurent du Maroni, for the year 2020 using MODIS-based gap-filled LST data. Our results show that the north and southwest of Ile de Cayenne, where there is a high concentration of build-up areas, were experiencing SUHI compared to the rest of the region. Furthermore, the northeast and west of Saint-Laurent du Maroni were also hotspots of the SUHI phenomenon. We further observed that the peak of high SUHI intensity could reach 5 °C for both Ile de Cayenne and Saint-Laurent du Maroni during the dry season when the temperature is high with limited rainfall. This study sets the stage for future SUHI studies in French Guiana and aims to contribute to the knowledge needed by decision-makers to achieve sustainable urbanization.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124113, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447444

RESUMO

Traditional monitoring of asian soybean rust severity is a time- and labor-intensive task, as it requires visual assessments by skilled professionals in the field. Thus, the use of remote sensing and machine learning (ML) techniques in data processing has emerged as an approach that can increase efficiency in disease monitoring, enabling faster, more accurate and time- and labor-saving evaluations. The aims of the study were: (i) to identify the spectral signature of different levels of Asian soybean rust severity; (ii) to identify the most accurate machine learning algorithm for classifying disease severity levels; (iii) which spectral input provides the highest classification accuracy for the algorithms; (iv) to determine a sample size of leaves that guarantees the best accuracy for the algorithms. A field experiment was carried out in the 2022/2023 harvest in a randomized block design with a 6x3 factorial scheme (ML algorithms x severity levels) and four replications. Disease severity levels assessed were: healthy leaves, 25 % severity, and 50 % severity. Leaf hyperspectral analysis was carried out over a wide range from 350 to 2500 nm. From this analysis, 28 spectral bands were extracted, seeking to distinguish the spectral signature for each severity level with the least input dataset. Data was subjected to machine learning analysis using Artificial Neural Network (ANN), REPTree (DT) and J48 decision trees, Random Forest (RF), and Support Vector Machine (SVM) algorithms, as well as a traditional classification method (Logistic Regression - LR). Two different input datasets were tested for each algorithm: the full spectrum (ALL) provided by the sensor and the 28 spectral bands (SB). Tests with different sample sizes were also conducted to investigate the algorithms' ability to detect severity levels with a reduced sample size. Our findings indicate differences between the spectral curves for the severity levels assessed, which makes it possible to differentiate between healthy plants with low and high severity using hyperspectral sensing. SVM was the most accurate algorithm for classifying severity levels by using all the spectral information as input. This algorithm also provided high classification accuracy when using smaller leaf samples. This study reveals that hyperspectral sensing and the use of ML algorithms provide an accurate classification of different levels of Asian rust severity, and can be powerful tools for a more efficient disease monitoring process.


Assuntos
Basidiomycota , Glycine max , Algoritmos , Aprendizado de Máquina , Redes Neurais de Computação , Máquina de Vetores de Suporte
15.
Field Crops Res ; 308: 109281, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495466

RESUMO

Breeding for disease resistance is a central component of strategies implemented to mitigate biotic stress impacts on crop yield. Conventionally, genotypes of a plant population are evaluated through a labor-intensive process of assigning visual scores (VS) of susceptibility (or resistance) by specifically trained staff, which limits manageable volumes and repeatability of evaluation trials. Remote sensing (RS) tools have the potential to streamline phenotyping processes and to deliver more standardized results at higher through-put. Here, we use a two-year evaluation trial of three newly developed biparental populations of maize doubled haploid lines (DH) to compare the results of genomic analyses of resistance to common rust (CR) when phenotyping is either based on conventional VS or on RS-derived (vegetation) indices. As a general observation, for each population × year combination, the broad sense heritability of VS was greater than or very close to the maximum heritability across all RS indices. Moreover, results of linkage mapping as well as of genomic prediction (GP), suggest that VS data was of a higher quality, indicated by higher -logp values in the linkage studies and higher predictive abilities for genomic prediction. Nevertheless, despite the qualitative differences between the phenotyping methods, each successfully identified the same genomic region on chromosome 10 as being associated with disease resistance. This region is likely related to the known CR resistance locus Rp1. Our results indicate that RS technology can be used to streamline genetic evaluation processes for foliar disease resistance in maize. In particular, RS can potentially reduce costs of phenotypic evaluations and increase trialing capacities.

16.
Sci Total Environ ; 921: 171144, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401721

RESUMO

Soil water balance is an essential element to consider for the management of droughts and agricultural land use. It is important to evaluate the water consumption of a crop in each of its phenological phases and the status of water reserves during critical hydrologic periods. This study developed an agricultural drought index (Standardized Soil Moisture Deficit Index - SMODI) conceptualized with a water balance model considering the vegetation stress caused by soil moisture deficit. This contribution was based on meteorological information, soil moisture from satellite images, hydrophysical properties of the soil and crop evapotranspiration. Information from 61 weather stations located in the dry zone of Tolima was used for estimating the water balance. SMODI was compared with the most common drought indexes: Standardized Precipitation - Evapotranspiration Index (SPEI), the Palmer Self-Calibrated Drought Index (scPDSI), and other eleven macroclimatic indexes. Pearson's correlation coefficients (r), Tukey's test, and analysis of variance were applied to analyze the degree of association between SMODI and the contrasting indexes on a quarterly basis. SMODI considers factors influencing soil moisture distribution and retention and the water stress thresholds that plants have evolved to withstand during drought periods. Consequently, this integrated approach enhances the assessment of agricultural drought by relying on pertinent physical processes. SMODI identified extremely dry, severe, moderate and normal drought 5 %, 3 %, 20 % and 72 % respectively conditions in areas characterized by Entisols, Inceptisols, and Andisols, where rice and fruit crops and pasturelands are cultivated. The SMODI has a good correlation with macroclimatic indexes (0.70 < r < 0.74).


Assuntos
Desidratação , Secas , Humanos , Colômbia , Agricultura , Solo
17.
Mar Pollut Bull ; 199: 115981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171164

RESUMO

Remote sensing data and numerical simulation are important tools to rebuild any oil spill accident letting to identify its source and trajectory. Through these tools was identified an oil spill that affected Oaxacan coast in October 2022. The SAR images were processed with a standard method included in SNAP software, and the numerical simulation was made using Lagrangian transport model included in GNOME software. With the combining of these tools was possible to discriminate the look-alikes from true oil slicks; which are the main issue when satellite images are used. Obtained results showed that 4.3m3 of crude oil were released into the ocean from a punctual point of oil pollution. This oil spill was classified such as a small oil spill. The marine currents and weathering processes were the main drivers that controlled the crude oil displacement and its dispersion. It was estimated in GNOME that 1.6 m3 of crude oil was floating on the sea (37.2 %), 2.4 m3 was evaporated into the atmosphere (55.8 %) and 0.3 m3 reached the coast of Oaxaca (7 %). This event affected 82 km of coastline, but the most important touristic areas as well as turtle nesting zones were not affected by this small crude oil spill. Results indicated that the marine-gas-pump number 3 in Salina Cruz, Oaxaca, is a punctual point of oil pollution in the Southern Mexican Pacific Ocean. Further work is needed to assess the economic and ecological damage to Oaxacan coast caused by this small oil spill.


Assuntos
Poluição por Petróleo , Petróleo , Poluição por Petróleo/análise , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto , Petróleo/análise , Tempo (Meteorologia)
18.
Environ Monit Assess ; 196(2): 175, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240934

RESUMO

The present study implements a methodology to estimate water quality values using statistical tools and remote sensing techniques in a tropical water body Sanalona. Linear regression models developed by Box-Cox transformations and processed data from LANDSAT-8 imagery (bands) were used to estimate TOC, TDS, and Chl-a of the Sanalona reservoir from 2013 to 2020 at five sampling sites measured every 6 months. A band discriminant analysis was carried out to statistically fit and optimize the proposed algorithms. Coefficients of determination beyond 0.9 were obtained for these water quality parameters (r2TOC = 0.90, r2TDS = 0.95, and r2Chl-a = 0.96). A comparison between the estimated and observed water quality was carried out using different data for validation. The validation of the models showed favorable results with R2TOC = 0.8525, R2TDS = 0.8172, and R2Chl-a = 0.9256. The present study implemented, validated, and compared the results obtained by using an ordered and standardized methodology proposed for the estimation of TOC, TDS, and Chl-a values based on water quality parameters measured in the field and using satellite images.


Assuntos
Clorofila , Tecnologia de Sensoriamento Remoto , Clorofila A/análise , Clorofila/análise , México , Monitoramento Ambiental/métodos , Qualidade da Água , Algoritmos
19.
Sci Total Environ ; 914: 169789, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181957

RESUMO

In recent years, pelagic sargassum (S. fluitans and S. natans - henceforth sargassum) macroalgal blooms have become more frequent and larger with higher biomass in the Tropical Atlantic region. They have environmental and socio-economic impacts, particularly on coastal ecosystems, tourism, fisheries and aquaculture industries, and on public health. Despite these challenges, sargassum biomass has the potential to offer commercial opportunities in the blue economy, although, it is reliant on key chemical and physical characteristics of the sargassum for specific use. In this study, we aim to utilise remotely sensed spectral profiles to determine species/morphotypes at different decomposition stages and their biochemical composition to support monitoring and valorisation of sargassum. For this, we undertook dedicated field campaigns in Barbados and Ghana to collect, for the first time, in situ spectral measurements between 350 and 2500 nm using a Spectra Vista Corp (SVC) HR-1024i field spectrometer of pelagic sargassum stranded biomass. The spectral measurements were complemented by uncrewed aerial system surveys using a DJI Phantom 4 drone and a DJI P4 multispectral instrument. Using the ground and airborne datasets this research developed an operational framework for remote detection of beached sargassum; and created spectral profiles of species/morphotypes and decomposition maps to infer biochemical composition. We were able to identify some key spectral regions, including a consistent absorption feature (920-1080 nm) found in all of the sargassum morphotype spectral profiles; we also observed distinction between fresh and recently beached sargassum particularly around 900-1000 nm. This work can support pelagic sargassum management and contribute to effective utilisation of the sargassum biomass to ultimately alleviate some of the socio-economic impacts associated with this emerging environmental challenge.


Assuntos
Ecossistema , Sargassum , Biomassa , Barbados , Aquicultura
20.
J Environ Manage ; 351: 119665, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086114

RESUMO

The vast peat deposits in the Peruvian Amazon are crucial to the global climate. Palm swamp, the most extensive regional peatland ecosystem faces different threats, including deforestation and degradation due to felling of the dominant palm Mauritia flexuosa for fruit harvesting. While these activities convert this natural C sink into a source, the distribution of degradation and deforestation in this ecosystem and related C emissions remain unstudied. We used remote sensing data from Landsat, ALOS-PALSAR, and NASA's GEDI spaceborne LiDAR-derived products to map palm swamp degradation and deforestation within a 28 Mha area of the lowland Peruvian Amazon in 1990-2007 and 2007-2018. We combined this information with a regional peat map, C stock density data and peat emission factors to determine (1) peatland C stocks of peat-forming ecosystems (palm swamp, herbaceous swamp, pole forest), and (2) areas of palm swamp peatland degradation and deforestation and associated C emissions. In the 6.9 ± 0.1 Mha of predicted peat-forming ecosystems within the larger 28 Mha study area, 73% overlaid peat (5.1 ± 0.9 Mha) and stored 3.88 ± 0.12 Pg C. Degradation and deforestation in palm swamp peatlands totaled 535,423 ± 8,419 ha over 1990-2018, with a pronounced dominance for degradation (85%). The degradation rate increased 15% from 15,400 ha y-1 (1990-2007) to 17,650 ha y-1 (2007-2018) and the deforestation rate more than doubled from 1,900 ha y-1 to 4,200 ha y-1. Over 1990-2018, emissions from degradation amounted to 26.3 ± 3.5 Tg C and emissions from deforestation were 12.9 ± 0.5 Tg C. The 2007-2018 emission rate from both biomass and peat loss of 1.9 Tg C yr-1 is four times the average biomass loss rate due to gross deforestation in 2010-2019 reported for the hydromorphic Peruvian Amazon. The magnitude of emissions calls for the country to account for deforestation and degradation of peatlands in national reporting.


Assuntos
Ecossistema , Áreas Alagadas , Carbono/análise , Conservação dos Recursos Naturais , Peru , Solo , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA