Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 171: 110323, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37703637

RESUMO

Acylases catalyze the hydrolysis of amide bonds. Penicillin G acylase (PGA) is used for the semi-synthesis of penicillins and cephalosporins. Although protein immobilization increases enzyme stability, the design of immobilized systems is difficult and usually it is empirically performed. We describe a novel application of our strategy for the Rational Design of Immobilized Derivatives (RDID) to produce optimized acylase-based immobilized biocatalysts for enzymatic bioconversion. We studied the covalent immobilization of the porcine kidney aminoacylase-1 onto aldehyde-based supports. Predictions of the RDID1.0 software and the experimental results led to the selection of glyoxyl-Sepharose CL 4B support and pH 10.0. One of the predicted clusters of reactive amino groups generates an enzyme-support configuration with highly accessible active sites, contributing with 82% of the biocatalyst's total activity. For Escherichia coli PGA, the predictions and experimental results show similar maximal amounts of immobilized protein and activity at pH 8.0 and 10.0 on glyoxyl-Sepharose CL 10B. However, thermal stability of the immobilized derivative is higher at pH 10.0 due to an elevated probability of multipoint covalent attachment. In this case, two clusters of amino groups are predicted to be relevant for PGA immobilization in catalytically competent configurations at pH 10.0, showing accessible active sites and contributing with 36% and 44% of the total activity, respectively. Our results support the usefulness of the RDID strategy to model different protein engineering approaches (site-directed mutagenesis or obtainment of fusion proteins) and select the most promising ones, saving time and laboratory work, since the in silico-designed modified proteins could have higher probabilities of success on bioconversion processes.


Assuntos
Enzimas Imobilizadas , Penicilina Amidase , Animais , Suínos , Enzimas Imobilizadas/metabolismo , Amidoidrolases/metabolismo , Estabilidade Enzimática , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Penicilina Amidase/química
2.
Biotechnol Appl Biochem ; 69(2): 479-491, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33580532

RESUMO

Our novel strategy for the rational design of immobilized derivatives (RDID) is directed to predict the behavior of the protein immobilized derivative before its synthesis, by the usage of mathematic algorithms and bioinformatics tools. However, this approach needs to be validated for each target enzyme. The objective of this work was to validate the RDID strategy for covalent immobilization of the enzyme laccase from Trametes maxima MUCL 44155 on glyoxyl- and monoaminoethyl-N-aminoethyl (MANA)-Sepharose CL 4B supports. Protein surface clusters, more probable configurations of the protein-supports systems at immobilization pHs, immobilized enzyme activity, and protein load were predicted by RDID1.0 software. Afterward, immobilization was performed and predictions were experimentally confirmed. As a result, the laccase-MANA-Sepharose CL 4B immobilized derivative is better than laccase-glyoxyl-Sepharose CL 4B in predicted immobilized derivative activity (63.6% vs. 29.5%). Activity prediction was confirmed by an experimentally expressed enzymatic activity of 68%, using 2,6-dimethoxyphenol as substrate. Experimental maximum protein load matches the estimated value (11.2 ± 1.3 vs. 12.1 protein mg/support mL). The laccase-MANA-Sepharose CL 4B biocatalyst has a high specificity for the acid blue 62 colorant. The results obtained in this work suggest the possibility of using this biocatalyst for wastewater treatment.


Assuntos
Lacase , Trametes , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Lacase/metabolismo , Polyporaceae , Sefarose/análogos & derivados
3.
World J Microbiol Biotechnol ; 37(1): 9, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33392828

RESUMO

Current worldwide challenges are to increase the food production and decrease the environmental contamination by industrial emissions. For this, bacteria can produce plant growth promoter phytohormones and mediate the bioremediation of sewage by heavy metals removal. We developed a Rational Design of Immobilized Derivatives (RDID) strategy, applicable for protein, spore and cell immobilization and implemented in the RDID1.0 software. In this work, we propose new algorithms to optimize the theoretical maximal quantity of cells to immobilize (tMQCell) on solid supports, implemented in the RDIDCell software. The main modifications to the preexisting algorithms are related to the sphere packing theory and exclusive immobilization on the support surface. We experimentally validated the new tMQCell parameter by electrostatic immobilization of ten microbial strains on AMBERJET® 4200 Cl- porous solid support. All predicted tMQCell match the practical maximal quantity of cells to immobilize with a 10% confidence. The values predicted by the RDIDCell software are more accurate than the values predicted by the RDID1.0 software. 3-indolacetic acid (IAA) production by one bacterial immobilized derivative was higher (~ 2.6 µg IAA-like indoles/108 cells) than that of the cell suspension (1.5 µg IAA-like indoles/108 cells), and higher than the tryptophan amount added as indole precursor. Another bacterial immobilized derivative was more active (22 µg Cr(III)/108 cells) than the resuspended cells (14.5 µg Cr(III)/108 cells) in bioconversion of Cr(VI) to Cr(III). Optimized RDID strategy can be used to synthesize bacterial immobilized derivatives with useful biotechnological applications.


Assuntos
Biodegradação Ambiental , Células Imobilizadas/metabolismo , Biologia Computacional/métodos , Algoritmos , Bactérias/metabolismo , Biomassa , Poluentes Ambientais , Metais Pesados/metabolismo , Software , Eletricidade Estática
4.
Prep Biochem Biotechnol ; 47(8): 745-753, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28402172

RESUMO

Discovery of new protease inhibitors may result in potential therapeutic agents or useful biotechnological tools. Obtainment of these molecules from natural sources requires simple, economic, and highly efficient purification protocols. The aim of this work was the obtainment of affinity matrices by the covalent immobilization of dipeptidyl peptidase IV (DPP-IV) and papain onto cellulose membranes, previously activated with formyl (FCM) or glyoxyl groups (GCM). GCM showed the highest activation grade (10.2 µmol aldehyde/cm2). We implemented our strategy for the rational design of immobilized derivatives (RDID) to optimize the immobilization. pH 9.0 was the optimum for the immobilization through the terminal α-NH2, configuration predicted as catalytically competent. However, our data suggest that protein immobilization may occur via clusters of few reactive groups. DPP-IV-GCM showed the highest maximal immobilized protein load (2.1 µg/cm2), immobilization percentage (91%), and probability of multipoint covalent attachment. The four enzyme-support systems were able to bind at least 80% of the reversible competitive inhibitors bacitracin/cystatin, compared with the available active sites in the immobilized derivatives. Our results show the potentialities of the synthesized matrices for affinity purification of protease inhibitors and confirm the robustness of the RDID strategy to optimize protein immobilization processes with further practical applications.


Assuntos
Celulose/química , Dipeptidil Peptidase 4/química , Enzimas Imobilizadas/química , Membranas Artificiais , Papaína/química , Adsorção , Animais , Carica , Galinhas , Concentração de Íons de Hidrogênio , Modelos Moleculares , Oxirredução , Sefarose , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA