RESUMO
BACKGROUND: Rare-earth sulfide nanoparticles (NPs) could harness the optical and magnetic features of rare-earth ions for applications in nanotechnology. However, reports of their synthesis are scarce and typically require high temperatures and long synthesis times. RESULTS: Here we present a biosynthesis of terbium sulfide (TbS) NPs using microorganisms, identifying conditions that allow Escherichia coli to extracellularly produce TbS NPs in aqueous media at 37 °C by controlling cellular sulfur metabolism to produce a high concentration of sulfide ions. Electron microscopy revealed ultrasmall spherical NPs with a mean diameter of 4.1 ± 1.3 nm. Electron diffraction indicated a high degree of crystallinity, while elemental mapping confirmed colocalization of terbium and sulfur. The NPs exhibit characteristic absorbance and luminescence of terbium, with downshifting quantum yield (QY) reaching 28.3% and an emission lifetime of ~ 2 ms. CONCLUSIONS: This high QY and long emission lifetime is unusual in a neat rare-earth compound; it is typically associated with rare-earth ions doped into another crystalline lattice to avoid non-radiative cross relaxation. This suggests a reduced role of nonradiative processes in these terbium-based NPs. This is, to our knowledge, the first report revealing the advantage of biosynthesis over chemical synthesis for Rare Earth Element (REE) based NPs, opening routes to new REE-based nanocrystals.
Assuntos
Escherichia coli , Metais Terras Raras , Sulfetos , Térbio , Térbio/química , Térbio/metabolismo , Escherichia coli/metabolismo , Sulfetos/metabolismo , Sulfetos/química , Metais Terras Raras/metabolismo , Metais Terras Raras/química , Nanopartículas/química , Luminescência , Química Verde/métodosRESUMO
A mining tailing dam rupture in Brazil in November 2015 released millions of tons of mining waste into the Rio Doce ecosystem, leading to long-term aquatic ecosystem impacts. Although multiple lines of evidence indicate tailings associations with potentially toxic elements in estuarine sediments and biological impact and bioaccumulation pathways in fishes, the extent of contamination in base benthic species is still largely unknown. Moreover, Rare Earth Elements (REE) have not received any attention in this regard. This study assessed REE in fiddler crabs (Minuca rapax) sampled from the Rio Doce estuary in 2017, nearly 2 years after the disaster. The ΣREE in crab hepatopancreas and muscle were high (327.83 mg kg-1 w.w. and 33.84 mg kg-1 w.w., respectively, compared to other assessments in crabs, indicating a preference for REE bioaccumulation in the hepatopancreas compared to muscle. Neodimium, La, and Ce were detected at the highest concentrations. The REE from the Rio Doce Basin were, thus, transported and deposited in the estuary with the mine tailings slurry, leading to bioaccumulation in crabs. This may lead to trophic effects and other ecological impacts not readily measured by typical impact assessment studies, revealing an invisible and not typically acknowledged damage to the Rio Doce estuary.
RESUMO
In this work, bioaccessibility tests for rare earth elements (REEs), Th, and U in marine sediment were carried out, in addition to complementary tests for cytotoxicity and bioaccumulation for the elements La, Ce, Eu, and Gd. The evaluation of human health risk through dermal absorption and oral ingestion was performed using the hazard quotient (HQ). According to the gastric digestion simulation (SBET), it was observed that the elements Ce and Nd exhibited higher absorption capacities in the human body (> 2 µg g-1). La and Sc presented intermediate concentrations (close to 1 µg g-1), while the remaining elements displayed concentrations below 0.5 µg g-1. In the gastrointestinal digestion extraction stage (PBET), all the elements maintained a similar absorption capacity to that observed in SBET, except for the absorption of Y which increased. The results of the bioaccumulation test conducted with fibroblast cells (L929) indicated that La and Eu had a 25% probability of intracellular accumulation. The cell viability test, with exposure to a standard REEs, Th, and U solution in 2% v v-1 HNO3 medium (until 100 µg mL-1) and an aqueous solution of La2O3, Gd(NO3)3, Ce(NO3)3, and Eu2O3 (until 1000 µg mL-1), did not demonstrate cytotoxic effects on fibroblast cells. Considering the ingestion hazard quotient (HQing) and dermal hazard quotient (HQderm) obtained, it was suggested that there is no significant risk of non-carcinogenic effects (< 1). However, they had higher HQing values compared to HQderm, indicating that REEs pose more significant risk to human health through oral ingestion absorption than dermal absorption.
RESUMO
Iron ore tailings are stored in large dams and pose risks to the environment around the world. In Brazil, the rupture of these dams has become frequent and has generated environmental and social concern. Rare earth elements are good tracers of sediment sources and our results indicated chronic contamination of the seabed sediment from the marine region affected by the Fundão Dam tailings since 2015, including areas of environmental protection. This research, carried out between November 2018 and September 2021, with a database of 575 samples, showed a greater amount of contaminated material in the marine region adjacent to the Doce River mouth. Although data suggest prior mining contamination of the Doce River basin, the Fundão episode was an empirical and massive example of the environmental damage caused by these human activities over the centuries, showing that the impact remains in the shallow marine environments for years. Integr Environ Assess Manag 2024;20:179-188. © 2023 SETAC.
Os rejeitos de minério de ferro são armazenados em grandes barragens que trazem riscos ao meio ambiente em todo o mundo. No Brasil, o rompimento dessas barragens tem se tornado frequente e gerado preocupação ambiental e social. Elementos terras raras são bons marcadores de fontes sedimentares e nossos resultados indicaram uma contaminação crônica da região marinha afetada pelos rejeitos da barragem de Fundão, incluindo áreas de proteção ambiental. Esta pesquisa teve com 575 amostras analisadas entre os meses de novembro de 2018 e outubro de 2021, com a região marinha adjacente a foz do Rio Doce apresentando o maior grau de impacto. Embora os dados ressaltem a contaminação histórica da mineração na bacia do Rio Doce, o episódio do Fundão foi um exemplo empírico e massivo dos danos ambientais causados por essas atividades ao longo dos séculos, mostrando que o impacto permanece nos ambientes marinhos rasos por anos. Integr Environ Assess Manag 2024;20:179-188.
Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Humanos , Brasil , Rios , Mineração , Ferro , Poluentes Químicos da Água/análiseRESUMO
The present research aimed to evaluate the use of grape stalk in the adsorption of lanthanum and cerium to identify the best operating conditions enabling the application of the bioadsorbent in REEs leached from phosphogypsum. The grape stalk was characterized and showed an amorphous structure with a heterogeneous and very porous surface. Also, it was possible to identify the groups corresponding to carboxylic acids, phenols, alcohols, aliphatic acids, and aromatic rings. The pH effect study showed that the adsorption process of La3+ and Ce3+ ions was favored at pH 5.0. The adsorption kinetics followed the pseudo-second-order model. In just 20 min, 80% saturation was reached, while equilibrium was reached after 120 min. The adsorption isotherms were appropriately adjusted to the Langmuir model, and the maximum adsorption capacities were obtained at 298 K, which were 35.22 mg g-1 for La3+ and 37.99 mg g-1 for Ce3+. Furthermore, the adsorption process was favorable, spontaneous, and exothermic. In the study's second phase, phosphogypsum was leached with a sulfuric acid solution. Then, the adsorption of REEs was carried out under the experimental conditions of pH after leaching and pH 5.0 (adjustment carried out with sodium hydroxide solution) at 298 K for 120 min and with adsorbent dosages of 1 and 5 g L-1. This process resulted in removal percentages above 95% for the most abundant REEs, such as neodymium, lanthanum, and cerium, at pH 5.0 and a dosage of 5 g L-1, demonstrating the effectiveness of the bioadsorbent used. These results indicate the potential of using grape residue as a promising bioadsorbent in recovering rare earth elements from phosphogypsum leachate.
Assuntos
Cério , Vitis , Poluentes Químicos da Água , Lantânio/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/químicaRESUMO
In this study, we emphasize the critical role of sample pretreatment. We report on the behavior of NdFeB magnet samples exposed to four different acid media for digestion. NdFeB magnets are becoming a significant source of neodymium, a rare-earth element critical to many technologies and a potential substitute for traditional mining of the element. To address this, we meticulously tested nitric acid, hydrochloric acid, acetic acid, and citric acid, all at a concentration of 1.6 M, as economical and environmentally friendly alternatives to the concentrated mineral acids commonly used in the leaching of these materials. The pivotal stage involves the initial characterization of samples in the solid state using SEM-EDX and XPS analysis to obtain their initial composition. Subsequently, the samples are dissolved in the four aforementioned acids. Finally, neodymium is quantified using ICP-OES. Throughout our investigation, we evaluated some analytical parameters to determine the best candidate for performing the digestion, including time, limits of detection and quantification, accuracy, recovery of spike samples, and robustness. After careful consideration, we unequivocally conclude that 1.6 M nitric acid stands out as the optimal choice for dissolving NdFeB magnet samples, with the pretreatment of the samples being the critical aspect of this report.
Assuntos
Metais Terras Raras , Neodímio , Neodímio/química , Imãs , Espectrofotometria AtômicaRESUMO
Rare earth elements (REE) have unique chemical properties, which allow their use as geochemical tracers. In this context, the present study aims to assess the role of Funil Reservoir on REE biogeochemical behavior. We collected water samples upstream of the reservoir (P-01) in the city of Queluz, inside the reservoir (P-02), and downstream of Funil Reservoir (P-03) in the city of Itatiaia, RJ. In the field, physicochemical parameters were measured using a probe (pH, temperature, electrical conductivity, and dissolved oxygen). In the laboratory, water samples were filtered (0.45 µm) and properly packed until chemical analysis. Chlorophyll a concentrations were determined by a spectrophotometric method and suspended particulate matter (SPM) by a gravimetric method. Ionic concentrations were determined by ion chromatography technique and REE concentrations were determined by ICP-MS. Chlorophyll a concentrations were higher in Funil Reservoir. Ionic concentrations in Queluz (P-01) suggest anthropic contamination. The sum of REE in the dissolved fraction ranged from 2.12 to 12.22 µg L-1. A positive anomaly of La in Queluz indicates anthropic contamination. The observed patterns indicate that Funil Reservoir acts as a biogeochemical barrier, modifying the fluvial transport of REE. Nonetheless, another factor that probably influences REE behavior is the algal bloom that occurs in reservoirs during the rainy season. The seasonal behavior of algae can influence REE biogeochemistry through the incorporation and release of trace metals.
Assuntos
Metais Terras Raras , Poluentes Químicos da Água , Clorofila A/análise , Brasil , Monitoramento Ambiental , Metais Terras Raras/análise , Água/análise , Poluentes Químicos da Água/análiseRESUMO
Coal has been a valuable natural resource for Mexico not just for its relative abundance but for its critical role in the development of the steel and energy industries. It has been also important in the socioeconomic context of the northeast of the country. However, since years ago, coal mining is facing a transition due to the emergence of new energy sources and the public concern about global warming. A brief review on coal reserves, production and possible non-power uses was carried out to provide insight on the reserves in a global context, extraction patterns and alternatives that the Mexican coal industry has to evolve. For this purpose, Mexican coal reserves were overviewed and contextualized at a global level and total coal production figures from 1970 to 2021 were analyzed to identify fluctuations and differences in the amounts produced between coking and non-coking coal. Further, rare earth elements, carbon fiber and humic acid from coal were briefly reviewed with the aim of initiating a debate on the high value-added products that can be obtained and the technologies that can be adopted to develop the coal industry of Mexico. Coal proven reserves in Mexico are of 1211 million tonnes and, from 1970 to 2021, 428.11 million tonnes have been produced. Of the total cumulative production, 68.8% corresponds to non-coking coal and 31.2% to coking coal.
RESUMO
The use of environmental tracers brings comprehensive benefits to the management of water resources since it helps to prevent their pollution, minimize public health risks, and thus reduce the impact of urbanization. In Brazil, the Guarani Aquifer System (GAS) has strategic and environmental importance, making its preservation and sustainable exploitation mandatory. The present study aimed at evaluating sources of contamination in the GAS using the combination of geochemical data and two environmental tracers: nitrate isotopes (15NNO3 and 18ONO3) and one rare earth element (Gadolinium-Gd). For that, five wells-four exploiting the GAS and one the Bauru Aquifer System (BAS)-were selected to discuss the human inputs in groundwater used for public supply in an urban area. Traditional physicochemical analyses were conducted for six campaign samplings and nitrate monitoring for this period was evaluated on a time scale, also considering the accumulated rainfall. Besides that, the double isotopic method (DIM), e.g., δ18ONO3 e δ15NNO3, was applied to identify the fractionation and enable the distinction of the nitrate contamination source. In addition, the determination of anomalies of Gd, a wastewater-derived contaminant, was also performed to verify recent human inputs in groundwater. The results show that the local existence of nitrate in the GAS and BAS-even at low concentrations (values from 0.26 to 6.68 mg L-1)-originated from anthropogenic inputs (septic waste), as indicates the typical isotopic signals ratio in the isotopic approach. Associated with that, the evaluation of Gd permitted the separation of groundwater samples into older or more recent leakages. The use of environmental tracers to assess anthropogenic inputs in groundwater reiterates the importance of adopting more effective protection strategies for water resources management systems, in order to prevent contamination.
Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Nitratos/análise , Gadolínio/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Isótopos/análise , Água Subterrânea/análise , Isótopos de Nitrogênio/análiseRESUMO
Rare earth elements such as neodymium (Nd) are important elements used mainly in developing new technologies. Although they are found in low concentrations in nature, they can be obtained by extracting solid samples such as phosphogypsum. Among the techniques, adsorption has been used successfully with several adsorbent materials. In this work, two strains of Spirulina platensis (LEB-18 and LEB-52) were employed as biosorbents for efficiently removing the Nd element from the aqueous media. Biosorption tests were carried out in a batch system, and the results of the biosorption kinetics showed that for both materials, the biosorption of Nd was better described by the Avrami model. Moreover, it could be considered that 80 min would be necessary to attain the equilibrium of Nd(III) using both biosorbents. The result of the biosorption isotherms showed that for both strains, the best-fitted model was the Liu model, having a maximum biosorption capacity of 72.5 mg g−1 for LEB-18 and 48.2 mg g−1 for LEB-52 at a temperature of 298 K. Thermodynamics of adsorption showed that for both LEB-18 and LEB-52 the process was favorable (∆G° < 0) and exothermic (∆H° −23.2 for LEB-18 and ∆H° −19.9 for LEB-52). Finally, both strains were suitable to uptake Nd, and the better result of LEB-18 could be attributed to the high amount of P and S groups in this biomass. Based on the results, a mechanism of electrostatic attraction of Nd3+ and phosphate and sulfate groups of both strains of Spirulina platensis was proposed.
RESUMO
Contemporary industrial processes and the application of new technologies have increased the demand for rare earth elements (REEs). REEs are critical components for many applications related to semiconductors, luminescent molecules, catalysts, batteries, and so forth. REEs refer to a group of 17 elements that have similar chemical properties. REE mining has increased considerably in the last decade and is starting an REE supply crisis. Recently, the viability of secondary REE sources, such as mining wastewaters and acid mine drainage (AMD), has been considered. A strategy to recover REEs from secondary water-related sources is through the usage of adsorbents and ion exchange materials in preconcentration steps due to their presence in low concentrations. In the search for more sustainable processes, the evaluation of synthetic polymers and natural source materials, such as cellulose-based materials, for REE capture from secondary sources should be considered. In this review, the chemistry, sources, extraction, uses, and environmental impact of REEs are briefly described to finally focus on the study of different adsorption/ion exchange materials and their performance in capturing REEs from water sources, moving from commercially available ion exchange resins to cellulose-based materials.
RESUMO
How mine tailings storage facilities (TSF) are managed reflects the history, regulatory framework, and environment of a country and locale of the mine. Despite many attempts to find an environmentally friendly strategy for tailings management and governance that balances the needs of society and the ecosystem, there is no worldwide agreement regarding the best practices for tailings management and governance. This article reviews the evolution of copper tailings management and governance in Chile, current practices, and changes that could be or may need to be made to improve practices in response to local environmental conditions and local tolerance for risk. The progress to date in developing a holistic tailings management strategy is summarized. This article also describes recent proposals for the best available technologies (BATs), case histories of Chilean TSF using conventional technology, thickened tailings, paste tailings, filtered tailings, water use reduction, tailings reprocessing to obtain rare earth elements (REEs), circular economy, submarine deep-sea tailings disposal, and ways to avoid failure in a seismic region. Finally, the Chilean tailings industry's pending issues and future challenges in reducing the socioenvironmental impacts of tailings are presented, including advances made and lessons learned in developing more environmentally friendly solutions.
Assuntos
Cobre , Ecossistema , Chile , ÁguaRESUMO
Evidence that organic material preserves in deep time (>1 Ma) has been reported using a wide variety of analytical techniques. However, the comprehensive geochemical data that could aid in building robust hypotheses for how soft-tissues persist over millions of years are lacking from most paleomolecular reports. Here, we analyze the molecular preservation and taphonomic history of the Dreadnougtus schrani holotype (MPM-PV 1156) at both macroscopic and microscopic levels. We review the stratigraphy, depositional setting, and physical taphonomy of the D. schrani skeletal assemblage, and extensively characterize the preservation and taphonomic history of the humerus at a micro-scale via: (1) histological analysis (structural integrity) and X-ray diffraction (exogenous mineral content); (2) laser ablation-inductively coupled plasma mass spectrometry (analyses of rare earth element content throughout cortex); (3) demineralization and optical microscopy (soft-tissue microstructures); (4) in situ and in-solution immunological assays (presence of endogenous protein). Our data show the D. schrani holotype preserves soft-tissue microstructures and remnants of endogenous bone protein. Further, it was exposed to LREE-enriched groundwaters and weakly-oxidizing conditions after burial, but experienced negligible further chemical alteration after early-diagenetic fossilization. These findings support previous hypotheses that fossils that display low trace element uptake are favorable targets for paleomolecular analyses.
RESUMO
The Brazilian coast is rich in monazite which is found in beach sand deposits. In this study, the composition of the monazite sands from beaches of State of Espírito Santo, Brazil, was investigated. The concentrations of rare earth elements (REEs), Th, and U were determined by inductively coupled plasma mass spectrometry (ICP-MS). In the studied region, the mean concentration of investigated elements increased in the following order: Tm < Yb < Ho < Lu < Eu < Er < Tb < Dy < U < Y < Th < Gd < Sm < Pr < Nd < La < Ce. The sampling sites were classified into three clusters and discriminated by the concentrations of REEs, Th, and U found. In general, the radiological risk indices were higher than the established limits, and the risk of developing cancer was estimated to be higher than the world average.
Assuntos
Metais Terras Raras , Areia , Metais Terras Raras/análise , Medição de Risco , BrasilRESUMO
High amounts of phosphogypsum (PG) are generated in the production of phosphoric acid. Previous literature demonstrates that obtaining rare earth elements (REE) from PG is a promising alternative to managing this waste. However, the reported leaching efficiencies are low in most cases, or drastic leaching conditions are required. Therefore, this work aimed to study the leaching conditions of REE from PG to obtain high leaching efficiency values. Initially, a 24 factorial experimental design investigated the factors that affect the conventional acid leaching of REE from PG (leaching acid (citric and sulfuric acid), solid/liquid ratio, acid concentration, and temperature). Better leaching efficiency values of the sum of all REE (62.0% and 89.7% for citric and sulfuric acid, respectively) were obtained using an acid concentration of 3 mol L-1, solid/liquid ratio of 1/20 g mL-1, and temperature of 80 °C. Subsequently, the experiments optimization, performed through a central composite rotational design, indicated that the maximum leaching efficiency was achieved using a sulfuric acid concentration of 2.9 mol L-1, solid/liquid ratio of 1.7/20 g mL-1, and 55 °C. Under these conditions, the leaching efficiency of the sum of all REE was 90.0%. Leaching kinetics results showed that the equilibrium was reached in about 20 min for most REE. The mechanism investigation suggested that surface chemical reaction and diffusion through the boundary layer controlled the leaching.
Assuntos
Metais Terras Raras , Ácidos , Sulfato de Cálcio , Fósforo , TemperaturaRESUMO
Baseline data on concentration, fractionation, pollution level and ecological risk index for seventeen beach sediments from Santa Rosalia mining region of Baja California Sur, Mexico were assessed. Higher concentrations of Rare Earth Elements (REEs) (mean. 341.49 µg/g) indicated that it is higher than most of the mining regions around the world. Normalization pattern showed enrichment of Eu (>4) and calculated geochemical indices revealed that light and middle REEs are moderately polluted with most of the sampling points located closer to the river discharge. Potential Ecological Risk Index (PERI) showed that Eu (20.2), Tb (20.88), and Lu (28.57) pose moderate ecological risk to the soil at selected stations (10, 11, 15 and 16) with a risk index value ranging from 245 to 359. Pearson's correlation matrix suggested that all REEs are highly correlated (r2 0.95) with each other having similar geochemical characteristics and indicating identical source due to continuous mining activity.
Assuntos
Metais Terras Raras , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Metais Terras Raras/análise , México , Mineração , Poluentes Químicos da Água/análiseRESUMO
Lanthanoids in the southern Gulf of California (GC) seawater are reported for the first time. Lanthanoids showed differences between peninsular and continental coastline, coastal or marine ecosystems, and dry or rainy season. The chondrite-normalized values showed high variability but followed a same pattern. Light lanthanoids were more enriched than heavy ones. Values of ∑Ln and La/Lu were higher in continental than peninsular coastlines, coastal than adjacent marine ecosystems, and rainy than dry season. Differences were related to the lithology and perturbation degree of the ecosystem watersheds. The chondrite-normalized patterns are typical of geological origin. Slightly negative Ce anomaly was related to the low levels of oxygen in water for the oxidation of Ce (III) to Ce (IV) and its posterior scavenging. Negative δEu anomaly is explained by an influx of fluvial and eolian materials from the upper continental, while a positive Eu anomaly related to hydrothermal vent inputs was non-evidenced.
Assuntos
Ecossistema , Elementos da Série dos Lantanídeos , Chuva , Estações do Ano , Água do MarRESUMO
Plant food production is severely affected by fungi; to cope with this problem, farmers use synthetic fungicides. However, the need to reduce fungicide application has led to a search for alternatives, such as biostimulants. Rare-earth elements (REEs) are widely used as biostimulants, but their mode of action and their potential as an alternative to synthetic fungicides have not been fully studied. Here, the biostimulant effect of gadolinium (Gd) is explored using the plant-pathosystem Arabidopsis thaliana-Botrytis cinerea. We determine that Gd induces local, systemic, and long-lasting plant defense responses to B. cinerea, without affecting fungal development. The physiological changes induced by Gd have been related to its structural resemblance to calcium. However, our results show that the calcium-induced defense response is not sufficient to protect plants against B. cinerea, compared to Gd. Furthermore, a genome-wide transcriptomic analysis shows that Gd induces plant defenses and modifies early and late defense responses. However, the resistance to B. cinerea is dependent on JA/ET-induced responses. These data support the conclusion that Gd can be used as a biocontrol agent for B. cinerea. These results are a valuable tool to uncover the molecular mechanisms induced by REEs.
Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Botrytis/fisiologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Gadolínio/farmacologia , Oxilipinas/metabolismo , Substâncias Protetoras/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genéticaRESUMO
In east-central Brazil, the Ediacaran-Cambrian Bambuí Basin has the potential to provide a record of unique geochemical responses of Earth's ocean and atmosphere evolution during this key time interval. From this perspective, we studied an interval of the upper Bambuí Basin using sedimentologic, stratigraphic, and chemostratigraphic tools. The lower Cambrian Jaíba Member of the uppermost Serra da Saudade Formation is an interval of up to 60 m-thick of carbonate rocks disposed into two shallowing upward trends. Inner to outer ramp and high-energy shoal deposits are described, in which laminated microbialites are the prevailing sedimentary facies. REE + Y data suggest contamination by iron (oxy)hydroxides that are dissociated from the riverine detritic flux. Sedimentary iron enrichment may be related to the settling of iron nanoparticles in coastal environments, diagenetic iron mobilization, or both. MREE enrichment is caused by microbial degradation of organic matter in the iron reduction zone during the anoxic early-diagenetic stage. Chromium isotopes yielded negatively fractionated values (δ53 Cr = -0.69 to -0.27), probably resulting from biotic and abiotic reduction of dissolved Cr(VI) to light and less toxic Cr(III) within pores of microbial mats. The δ53 Cr data of the Jaíba microbialite are thus a product of metabolic reactions in microbial mats and do not reflect seawater signal. The isotopic offset from seawater is feasible from molecular diffusion of Cr into pore water and reduction reactions occurring deep inside the mat, although the exact mechanism and consequences are not yet fully understood due to the poor preservation of metabolic reactions in the geological record. Our study suggests that Cr isotopes can be used to reconstruct Cr and other metals cycling within ancient microbial mats, and that caution should be taken when using past microbialites to infer seawater Cr records and redox state of the atmosphere and ocean.